Log in

Surface activity, mechanisms, kinetics, and thermodynamic study of adsorption of malachite green dye onto sulfuric acid–functionalized Moringa oleifera leaves from aqueous solution

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In the present study, activated carbon prepared from H2SO4-functionalized Moringa oleifera leaves (ACMOL) was used as a potential adsorbent for the effective removal of malachite green (MG) dye from aqueous media. FT-IR, SEM, EDS, Zeta potential, XRD, BET, proximate, and CHNS analysis techniques were used for surface characterization of the ACMOL. The adsorption efficiency of the ACMOL was investigated as a function of varying adsorbent dosage (0.02–0.2 g/100 mL), pH (3.0–9.0), ionic strength (0.1–0.5 M KCl), urea concentration (0.1–0.5 M), contact time (30–210 min), and temperature (303–323 K). The representative adsorption isotherms belong to the typical L-type. Maximum percentage removal was found to be 84% (124.40 mg/g) for MG dye concentration (30 mg/L) at pH 7.0 and 303 K with ACMOL dose 0.02 g/100 mL. The adsorption kinetics and equilibrium experimental data of MG dye adsorption on the ACMOL were well explained by the pseudo-second-order kinetics (R2 = 0.99) and Langmuir isotherm model (R2 = 0.99), respectively. The value of adsorption and desorption coefficient was found to be 0.036 min−1 and 0.025 mg min−1/L, respectively. Thermodynamic study showed the spontaneous (ΔG° =  − 31.33, − 31.92, and − 32.49 kJ/mol at temperatures 303 K, 313 K, and 323 K, respectively) and exothermic (ΔH° =  − 13.7 kJ/mol) nature of the adsorption with some structural changes occurring on the ACMOL surface (ΔS° = 58.198 J/K·mol).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

It will be made available on reasonable request.

References

  • Abbas, M. (2020). Experimental investigation of activated carbon prepared from apricot stones material (ASM) adsorbent for removal of malachite green (MG) from aqueous solution. Adsorption Science & Technology, 38(1–2), 24–45. https://doi.org/10.1177/0263617420904476

    Article  CAS  Google Scholar 

  • Abdollahzadeh, H., Fazlzadeh, M., Afshin, S., Arfaeinia, H., Feizizadeh, A., Poureshgh, Y., & Rashtbari, Y. (2022). Efficiency of activated carbon prepared from scrap tires magnetized by Fe3O4 nanoparticles: Characterisation and its application for removal of reactive blue19 from aquatic solutions. International Journal of Environmental Analytical Chemistry, 102(8), 1911–1925. https://doi.org/10.1080/03067319.2020.1745199

    Article  CAS  Google Scholar 

  • Adeyi, A. A., Jamil, S. N., Abdullah, L. C., & Choong, T. S. (2019). Adsorption of malachite green dye from liquid phase using hydrophilic thiourea-modified poly (acrylonitrile-co-acrylic acid): Kinetic and isotherm studies. Journal of Chemistry. https://doi.org/10.1155/2019/4321475

    Article  Google Scholar 

  • Adeyi, A. A., Jamil, S. N. A. M., Abdullah, L. C., Choong, T. S. Y., Lau, K. L., & Alias, N. H. (2020). Simultaneous adsorption of malachite green and methylene blue dyes in a fixed-bed column using poly (acrylonitrile-co-acrylic acid) modified with thiourea. Molecules, 25(11), 26–50. https://doi.org/10.3390/molecules25112650

    Article  CAS  Google Scholar 

  • Ahmad, A. A., Ahmad, M. A., Yahaya, N. K. E., & Karim, J. (2021). Adsorption of malachite green by activated carbon derived from gasified Hevea brasiliensis root. Arabian Journal of Chemistry, 14(4), 103104. https://doi.org/10.1016/j.arabjc.2021.103104

    Article  CAS  Google Scholar 

  • Ahmadfazeli, A., Poureshgh, Y., Rashtbari, Y., Akbari, H., Pourali, P., & Adibzadeh, A. (2021). Removal of metronidazole antibiotic from aqueous solution by ammonia-modified activated carbon: Adsorption isotherm and kinetic study. Journal of Water, Sanitation and Hygiene for Development, 11(6), 1083–1096.

    Article  Google Scholar 

  • Al-Ghouti, M. A., Khraisheh, M. A. M., Allen, S. J., & Ahmad, M. N. (2003). The removal of dyes from textile wastewater: A study of the physical characteristics and adsorption mechanisms of diatomaceous earth. Journal of Environmental Management, 69(3), 229–238. https://doi.org/10.1016/j.jenvman.2003.09.005

    Article  CAS  Google Scholar 

  • Anjorin, T. S., Ikokoh, P., & Okolo, S. (2010). Mineral composition of Moringa oleifera leaves, pods and seeds from two regions in Abuja, Nigeria. International Journal of Agriculture and Biology, 12(3), 431–434.

    CAS  Google Scholar 

  • Askari, R., Afshin, S., Rashtbari, Y., Moharrami, A., Mohammadi, F., Vosuoghi, M., & Dargahi, A. (2023). Synthesis of activated carbon from walnut wood and magnetized with cobalt ferrite (CoFe2O4) and its application in removal of cephalexin from aqueous solutions. Journal of Dispersion Science and Technology, 44(7), 1183–1194. https://doi.org/10.1080/01932691.2021.2008421

    Article  CAS  Google Scholar 

  • Banerjee, S., & Chattopadhyaya, M. C. (2017). Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low-cost agricultural by-product. Arabian Journal of Chemistry, 10, S1629–S1638. https://doi.org/10.1016/j.arabjc.(2013).06.005

    Article  CAS  Google Scholar 

  • Bekçi, Z., Seki, Y., & Cavas, L. (2009). Removal of malachite green by using an invasive marine alga Caulerpa racemosa var. cylindracea. Journal of hazardous materials, 161(2–3), 1454–1460. https://doi.org/10.1016/j.jhazmat.2008.04.125

    Article  CAS  Google Scholar 

  • Bello, O. S. (2013). Adsorptive removal of malachite green with activated carbon prepared from oil palm fruit fibre by KOH activation and CO2 gasification. South African Journal of Chemistry, 66, 32–41. https://doi.org/10.3390/molecules25112650

    Article  CAS  Google Scholar 

  • Bello, O. S., & Ahmad, M. A. (2011). Adsorptive removal of a synthetic textile dye using cocoa pod husks. Toxicological & Environmental Chemistry, 93(7), 1298–1308. https://doi.org/10.1080/02772248.2011.590490

    Article  CAS  Google Scholar 

  • Bhomick, P. C., Supong, A., Kumar, S., Sema, A. I., Merry, T., & Sinha, D. (2023). Utilization of Pinus kesiya and Schima wallichii biomass-derived activated carbon for methylene blue removal: Adsorption performance and mechanistic insights. Water Conservation Science and Engineering, 8(1), 1–15. https://doi.org/10.1007/s41101-023-00220-0

    Article  Google Scholar 

  • Choudhary, M., Kumar, R., & Neogi, S. (2020). Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu+ 2 and Ni+ 2 from water. Journal of Hazardous Materials, 392, 122441. https://doi.org/10.1016/j.jhazmat.2020.122441

    Article  CAS  Google Scholar 

  • Chowdhury, S., Mishra, R., Saha, P., & Kushwaha, P. (2011). Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination, 265(1–3), 159–168. https://doi.org/10.1016/j.desal.2010.07.047

    Article  CAS  Google Scholar 

  • Ciğeroğlu, Z., Kazan-Kaya, E. S., El Messaoudi, N., Fernine, Y., Americo-Pinheiro, J. H. P., & Jada, A. (2023). Remediation of tetracycline from aqueous solution through adsorption on g-C3N4-ZnO-BaTiO3 nanocomposite: Optimization, modeling, and theoretical calculation. Journal of Molecular Liquids, 369, 120866. https://doi.org/10.1016/j.molliq.2022.120866

    Article  CAS  Google Scholar 

  • Dahri, M. K., Kooh, M. R. R., & Lim, L. B. (2014). Water remediation using low cost adsorbent walnut shell for removal of malachite green: Equilibrium, kinetics, thermodynamic and regeneration studies. Journal of Environmental Chemical Engineering, 2(3), 1434–1444. https://doi.org/10.1016/j.jece.2014.07.008

    Article  CAS  Google Scholar 

  • Danial, R., Sobri, S., Abdullah, L. C., & Mobarekeh, M. N. (2019). FTIR, CHNS and XRD analyses define mechanism of glyphosate herbicide removal by electrocoagulation. Chemosphere, 233, 559–569. https://doi.org/10.1016/j.chemosphere.2019.06.010

    Article  CAS  Google Scholar 

  • Debord, J., Harel, M., Bollinger, J. C., & Chu, K. H. (2022). The Elovich isotherm equation: Back to the roots and new developments. Chemical Engineering Science, 262, 118012. https://doi.org/10.1016/j.ces.2022.118012

    Article  CAS  Google Scholar 

  • El Khomri, M., El Messaoudi, N., Dbik, A., Bentahar, S., Lacherai, A., Chegini, Z. G., & Bouich, A. (2021). Removal of Congo red from aqueous solution in single and binary mixture systems using Argan nutshell wood. Pigment & Resin Technology, 51(5), 477–488. https://doi.org/10.1108/PRT-04-2021-0045

    Article  Google Scholar 

  • El Khomri, M., El Messaoudi, N., Dbik, A., Bentahar, S., Fernine, Y., Lacherai, A., & Jada, A. (2022). Optimization based on response surface methodology of anionic dye desorption from two agricultural solid wastes. Chemistry Africa, 5(4), 1083–1095. https://doi.org/10.1007/s42250-022-00395-4

    Article  CAS  Google Scholar 

  • El Messaoudi, N., Dbik, A., El Khomri, M., Sabour, A., Bentahar, S., & Lacherai, A. (2017a). Date stones of Phoenix dactylifera and jujube shells of Ziziphus lotus as potential biosorbents for anionic dye removal. International Journal of Phytoremediation, 19(11), 1047–1052. https://doi.org/10.1080/15226514.2017.1319331

    Article  CAS  Google Scholar 

  • El Messaoudi, N., El Khomri, M., Dbik, A., Bentahar, S., & Lacherai, A. (2017b). Selective and competitive removal of dyes from binary and ternary systems in aqueous solutions by pretreated jujube shell (Zizyphus lotus). Journal of Dispersion Science and Technology, 38(8), 1168–1174. https://doi.org/10.1080/01932691.2016.1228070

    Article  CAS  Google Scholar 

  • El Messaoudi, N., El Khomri, M., Chegini, Z. G., Bouich, A., Dbik, A., Bentahar, S., Labjar, N., Iqbal, M., Jada, A., & Lacherai, A. (2022a). Dye removal from aqueous solution using nanocomposite synthesized from oxalic acid-modified agricultural solid waste and ZnFe 2 O 4 nanoparticles. Nanotechnology for Environmental Engineering, 7, 1–15. https://doi.org/10.1007/s41204-021-00173-6

    Article  CAS  Google Scholar 

  • El Messaoudi, N., El Khomri, M., Chegini, Z. G., Dbik, A., Bentahar, S., Iqbal, M., Jada, A., & Lacherai, A. (2022b). Desorption of crystal violet from alkali-treated agricultural material waste: An experimental study, kinetic, equilibrium and thermodynamic modeling. Pigment & Resin Technology, 51(3), 309–319. https://doi.org/10.1108/PRT-02-2021-0019

    Article  Google Scholar 

  • El Messaoudi, N., El Mouden, A., El Khomri, M., Bouich, A., Fernine, Y., Ciğeroğlu, Z., Americo-Pinheiro, J. H. P., Labjar, N., Jada, A., Sillanpää, M., & Lacherai, A. (2023). Experimental study and theoretical statistical modeling of acid blue 25 remediation using activated carbon from Citrus sinensis leaf. Fluid Phase Equilibria, 563, 113585. https://doi.org/10.1016/j.fluid.2022.113585

    Article  CAS  Google Scholar 

  • El Mouden, A., El Guerraf, A., El Messaoudi, N., Haounati, R., Ait El Fakir, A., & Lacherai, A. (2022). Date stone functionalized with 3-aminopropyltriethoxysilane as a potential biosorbent for heavy metal ions removal from aqueous solution. Chemistry Africa, 5(3), 745–759. https://doi.org/10.1007/s42250-022-00350-3

    Article  CAS  Google Scholar 

  • El Messaoudi, N., El Khomri, M., Goodarzvand Chegini, Z., Chlif, N., Dbik, A., Bentahar, S., Iqbal, M., Jada, A., & Lacherai, A. (2021). Desorption study and reusability of raw and H2SO4 modified jujube shells (Zizyphus lotus) for the methylene blue adsorption. International Journal of Environmental Analytical Chemistry, 1–17. https://doi.org/10.1080/03067319.2021.1912338

  • El Messaoudi, N., El Khomri, M., El Mouden, A., Bouich, A., Jada, A., Lacherai, A., Iqbal, H. M., Mulla, S. I., Kumar, V., & Américo-Pinheiro, J. H. P. (2022). Regeneration and reusability of non-conventional low-cost adsorbents to remove dyes from wastewaters in multiple consecutive adsorption–desorption cycles: A review. Biomass Conversion and Biorefinery, 1–18. https://doi.org/10.1007/s13399-022-03604-9

  • Freundlich, H. M. F. (1906). Over the adsorption in solution. Journal of Physical Chemistry, 57, 385–471.

    CAS  Google Scholar 

  • Gedam, V. V., Raut, P., Chahande, A., & Pathak, P. (2019). Kinetic, thermodynamics and equilibrium studies on the removal of Congo red dye using activated teak leaf powder. Applied Water Science, 9, 1–13. https://doi.org/10.1007/s13201-019-0933-9

    Article  CAS  Google Scholar 

  • Ghaedi, M., Ansari, A., & Sahraei, R. (2013). ZnS: Cu nanoparticles loaded on activated carbon as novel adsorbent for kinetic, thermodynamic and isotherm studies of Reactive Orange 12 and Direct yellow 12 adsorption. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 114, 687–694. https://doi.org/10.1016/j.saa.2013.04.091

    Article  CAS  Google Scholar 

  • Gündüz, F., & Bayrak, B. (2017). Biosorption of malachite green from an aqueous solution using pomegranate peel: Equilibrium modelling, kinetic and thermodynamic studies. Journal of Molecular Liquids, 243, 790–798. https://doi.org/10.1016/j.molliq.2017.08.095

    Article  CAS  Google Scholar 

  • Gupta, V. K., Jain, R., Mittal, A., Saleh, T. A., Nayak, A., Agarwal, S., & Sikarwar, S. (2012). Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Materials Science and Engineering: C, 32(1), 12–17. https://doi.org/10.1016/j.msec.2011.08.018

    Article  CAS  Google Scholar 

  • Gupta, N., Kushwaha, A. K., & Chattopadhyaya, M. C. (2016). Application of potato (Solanum tuberosum) plant wastes for the removal of methylene blue and malachite green dye from aqueous solution. Arabian Journal of Chemistry, 9, S707–S716. https://doi.org/10.1016/j.arabjc.2011.07.021

    Article  CAS  Google Scholar 

  • Hamdaoui, O. (2006). Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick. Journal of Hazardous Materials, 135(1–3), 264–273. https://doi.org/10.1016/j.jhazmat.2005.11.062

    Article  CAS  Google Scholar 

  • Hameed, K. S., Muthirulan, P., & Sundaram, M. M. (2017). Adsorption of chromotrope dye onto activated carbons obtained from the seeds of various plants: Equilibrium and kinetics studies. Arabian Journal of Chemistry, 10, S2225–S2233. https://doi.org/10.1016/j.arabjc.2013.07.058

    Article  CAS  Google Scholar 

  • Jabar, J. M., & Odusote, Y. A. (2021). Utilization of prepared activated biochar from water lily (Nymphaea lotus) stem for adsorption of malachite green dye from aqueous solution. Biomass Conversion and Biorefinery, 1–12. https://doi.org/10.1007/s13399-021-01399-9

  • Jiang, D., Li, H., Cheng, X., Ling, Q., Chen, H., Barati, B., Yao, Q., Abomohra, A., Hu, X., Bartocci, P., & Wang, S. (2023). A mechanism study of methylene blue adsorption on seaweed biomass derived carbon: From macroscopic to microscopic scale. Process Safety and Environmental Protection, 172, 1132–1143. https://doi.org/10.1016/j.psep.2023.02.044

    Article  CAS  Google Scholar 

  • Kalaiyan, G., Suresh, S., Prabu, K. M., Thambidurai, S., Kandasamy, M., Pugazhenthiran, N., Kumar, S. K., & Muneeswaran, T. (2021). Bactericidal activity of Moringa oleifera leaf extract assisted green synthesis of hierarchical copper oxide microspheres against pathogenic bacterial strains. Journal of Environmental Chemical Engineering, 9(1), 104847. https://doi.org/10.1016/j.jece.2020.104847

    Article  CAS  Google Scholar 

  • Kansal, S. K., & Kumari, A. (2014). Potential of M. oleifera for the treatment of water and wastewater. Chemical reviews, 114(9), 4993–5010. https://doi.org/10.1021/cr400093w

    Article  CAS  Google Scholar 

  • Kehrein, P., Van Loosdrecht, M., Osseweijer, P., Garfí, M., Dewulf, J., & Posada, J. (2020). A critical review of resource recovery from municipal wastewater treatment plants–market supply potentials, technologies and bottlenecks. Environmental Science: Water Research & Technology, 6(4), 877–910. https://doi.org/10.1039/C9EW00905A

    Article  CAS  Google Scholar 

  • Khalid, S., Shahid, M., Natasha, Bibi, I., Sarwar, T., Shah, A. H., & Niazi, N. K. (2018). A review of environmental contamination and health risk assessment of wastewater use for crop irrigation with a focus on low and high-income countries. International Journal of Environmental Research and Public Health, 15(5), 895. https://doi.org/10.3390/ijerph15050895

    Article  CAS  Google Scholar 

  • Khattri, S. D., & Singh, M. K. (2009). Removal of malachite green from dye wastewater using neem sawdust by adsorption. Journal of Hazardous Materials, 167(1–3), 1089–1094. https://doi.org/10.1016/j.jhazmat.2009.01.101

    Article  CAS  Google Scholar 

  • Khomri, M. E., Messaoudi, N. E., Dbik, A., Bentahar, S., Fernine, Y., Bouich, A., Lacherai, A., & Jada, A. (2022). Modification of low-cost adsorbent prepared from agricultural solid waste for the adsorption and desorption of cationic dye. Emergent Materials, 5(6), 1679–1688. https://doi.org/10.1007/s42247-022-00390-y

    Article  CAS  Google Scholar 

  • Kooh, M. R. R., Dahri, M. K., & Lim, L. B. (2017). Removal of methyl violet 2B dye from aqueous solution using Nepenthes rafflesiana pitcher and leaves. Applied Water Science, 7, 3859–3868. https://doi.org/10.1007/s13201-017-0537-1

    Article  CAS  Google Scholar 

  • Kooh, M. R. R., Dahri, M. K., Lim, L. B., Lim, L. H., & Chan, C. M. (2018). Separation of acid blue 25 from aqueous solution using water lettuce and agro-wastes by batch adsorption studies. Applied Water Science, 8, 1–10. https://doi.org/10.1007/s13201-018-0714-x

    Article  CAS  Google Scholar 

  • Kumar, K. V., & Porkodi, K. (2007). Batch adsorber design for different solution volume/adsorbent mass ratios using the experimental equilibrium data with fixed solution volume/adsorbent mass ratio of malachite green onto orange peel. Dyes and Pigments, 74(3), 590–594. https://doi.org/10.1016/j.dyepig.2006.03.024

    Article  CAS  Google Scholar 

  • Kundu, S., & Gupta, A. K. (2006). Arsenic adsorption onto iron oxide-coated cement (IOCC): Regression analysis of equilibrium data with several isotherm models and their optimization. Chemical Engineering Journal, 122(1–2), 93–106. https://doi.org/10.1016/j.cej.2006.06.002

    Article  CAS  Google Scholar 

  • Lehmann, S. (2012). Can rapid urbanisation ever lead to low carbon cities? The case of Shanghai in comparison to Potsdamer Platz Berlin. Sustainable Cities and Society, 3, 1–12. https://doi.org/10.1016/j.scs.2011.08.001

    Article  Google Scholar 

  • Li, H., Kong, J., Zhang, H., Gao, J., Fang, Y., Shi, J., Ge, T., Fang, T., Shi, Y., Zhang, R., & Zhang, N. (2023). Mechanisms and adsorption capacities of ball milled biomass fly ash/biochar composites for the adsorption of methylene blue dye from aqueous solution. Journal of Water Process Engineering, 53, 103713. https://doi.org/10.1016/j.jwpe.2023.103713

    Article  Google Scholar 

  • Lima, E. C., Hosseini-Bandegharaei, A., Moreno-Piraján, J. C., & Anastopoulos, I. (2019). A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. Journal of Molecular Liquids, 273, 425–434. https://doi.org/10.1016/J.MOLLIQ.2018.10.048

    Article  CAS  Google Scholar 

  • Lu, Y. C., Kooh, M. R. R., Lim, L. B. L., & Priyantha, N. (2021). Effective and simple NaOH-modification method to remove methyl violet dye via Ipomoea aquatica roots. Adsorption Science & Technology, 2021, 1–12. https://doi.org/10.1155/2021/5932222

    Article  CAS  Google Scholar 

  • Mamuad, R. Y., Pascual, M. F. T., & Choi, A. E. S. (2022). Development of a low-cost dispenser-type water filtration system. Cleaner and Responsible Consumption, 7, 100085. https://doi.org/10.1016/j.clrc.2022.100085

    Article  Google Scholar 

  • Mashkoor, F., & Nasar, A. (2019). Preparation, characterization and adsorption studies of the chemically modified Luffa aegyptica peel as a potential adsorbent for the removal of malachite green from aqueous solution. Journal of Molecular Liquids, 274, 315–327. https://doi.org/10.1016/j.molliq.2018.10.119

    Article  CAS  Google Scholar 

  • Mishra, P., Singh, K., & Dixit, U. (2021). Adsorption, kinetics and thermodynamics of phenol removal by ultrasound-assisted sulfuric acid-treated pea (Pisum sativum) shells. Sustainable Chemistry and Pharmacy, 22, 100491. https://doi.org/10.1016/j.scp.2021.100491

    Article  CAS  Google Scholar 

  • Mishra, P., Singh, K., Dixit, U., Agarwal, A., & Bhat, R. A. (2022a). Effective removal of 4-Aminophenol from aqueous environment by pea (Pisum sativum) shells activated with sulfuric acid: Characterization, isotherm, kinetics and thermodynamics. Journal of the Indian Chemical Society, 99(7), 100528. https://doi.org/10.1016/j.jics.2022.100528

    Article  CAS  Google Scholar 

  • Mishra, P., Singh, K., & Pandey, G. (2022b). A comparative study of phenol removal by Pisum-sativum peels biochars derived at different pyrolysis temperatures: Isotherm, kinetic andthermodynamicmodelling. ChemistrySelect, 7(39), e202202856. https://doi.org/10.1002/slct.202202856

    Article  CAS  Google Scholar 

  • Mittal, A., Mittal, J., Malviya, A., & Gupta, V. K. (2009). Adsorptive removal of hazardous anionic dye “Congo red” from wastewater using waste materials and recovery by desorption. Journal of Colloid and Interface Science, 340(1), 16–26. https://doi.org/10.1016/j.jcis.2009.08.019

    Article  CAS  Google Scholar 

  • Mittal, A., Mittal, J., Malviya, A., & Gupta, V. K. (2010). Removal and recovery of Chrysoidine Y from aqueous solutions by waste materials. Journal of Colloid and Interface Science, 344(2), 497–507. https://doi.org/10.1016/j.jcis.2010.01.007

    Article  CAS  Google Scholar 

  • Munagapati, V. S., Yarramuthi, V., Kim, Y., Lee, K. M., & Kim, D. S. (2018). Removal of anionic dyes (Reactive Black 5 and Congo Red) from aqueous solutions using Banana Peel Powder as an adsorbent. Ecotoxicology and Environmental Safety, 148, 601–607. https://doi.org/10.1016/j.ecoenv.2017.10.075

    Article  CAS  Google Scholar 

  • Natarajan, S., Bajaj, H. C., & Tayade, R. J. (2018). Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process. Journal of Environmental Sciences, 65, 201–222. https://doi.org/10.1016/j.jes.2017.03.011

    Article  CAS  Google Scholar 

  • Piriya, R. S., Jayabalakrishnan, R. M., Maheswari, M., Boomiraj, K., & Oumabady, S. (2023). Comparative adsorption study of malachite green dye on acid-activated carbon. International Journal of Environmental Analytical Chemistry, 103(1), 16–30. https://doi.org/10.1080/03067319.2020.1849667

    Article  CAS  Google Scholar 

  • Podstawczyk, D., Witek-Krowiak, A., Chojnacka, K., & Sadowski, Z. (2014). Biosorption of malachite green by eggshells: Mechanism identification and process optimization. Bioresource Technology, 160, 161–165. https://doi.org/10.1016/j.biortech.2014.01.015

    Article  CAS  Google Scholar 

  • Rajeshkannan, R., Rajasimman, M., & Rajamohan, N. (2011). Decolourization of malachite green using tamarind seed: Optimization, isotherm and kinetic studies. Chemical Industry and Chemical Engineering Quarterly/CICEQ, 17(1), 67–79. https://doi.org/10.2298/CICEQ100716056R

    Article  CAS  Google Scholar 

  • Rashtbari, Y., Américo-Pinheiro, J. H. P., Bahrami, S., Fazlzadeh, M., Arfaeinia, H., & Poureshgh, Y. (2020). Efficiency of zeolite coated with zero-valent iron nanoparticles for removal of humic acid from aqueous solutions. Water, Air, & Soil Pollution, 231(10), 514. https://doi.org/10.1007/s11270-020-04872-9

    Article  CAS  Google Scholar 

  • Rashtbari, Y., Arfaeinia, H., Ahmadi, S., BahramiAsl, F., Afshin, S., Poureshgh, Y., & Fazlzadeh, M. (2022b). Potential of using green adsorbent of humic acid removal from aqueous solutions: Equilibrium, kinetics, thermodynamic and regeneration studies. International Journal of Environmental Analytical Chemistry, 102(17), 5373–5390. https://doi.org/10.1080/03067319.2020.1796993

    Article  CAS  Google Scholar 

  • Rashtbari, Y., Abazari, M., Arfaeinia, L., Gholizadeh, A., Afshin, S., Poureshgh, Y., & Alipour, M. (2023). The optimization of reactive black 5 dye removal in the sono-catalytic process combined with local yellow montmorillonite and hydrogen peroxide using response surface methodology from aqueous solutions. Biomass Conversion and Biorefinery, 13(7), 6067–6081. https://doi.org/10.1007/s13399-021-01773-7

    Article  CAS  Google Scholar 

  • Rashtbari, Y., Afshin, S., Hamzezadeh, A., Gholizadeh, A., Ansari, F. J., Poureshgh, Y., & Fazlzadeh, M. (2022). Green synthesis of zinc oxide nanoparticles loaded on activated carbon prepared from walnut peel extract for the removal of Eosin Y and Erythrosine B dyes from aqueous solution: Experimental approaches, kinetics models, and thermodynamic studies. Environmental Science and Pollution Research, 1–13. https://doi.org/10.1007/s11356-021-16006-7

  • Sadegh, N., Haddadi, H., Arabkhani, P., Asfaram, A., & Sadegh, F. (2021). Simultaneous elimination of rhodamine B and malachite green dyes from the aqueous sample with magnetic reduced graphene oxide nanocomposite: Optimization using experimental design. Journal of Molecular Liquids, 343, 117710. https://doi.org/10.1016/j.molliq.2021.117710

    Article  CAS  Google Scholar 

  • Saha, P., Chowdhury, S., Gupta, S., Kumar, I., & Kumar, R. (2010). Assessment on the removal of malachite green using tamarind fruit shell as biosorbent. CLEAN–Soil, Air, Water, 38(5–6), 437–445. https://doi.org/10.1002/clen.200900234

    Article  CAS  Google Scholar 

  • Salem, M. Z., Ali, H. M., & Akrami, M. (2021). Moringa oleifera seeds-removed ripened pods as alternative for papersheet production: Antimicrobial activity and their phytoconstituents profile using HPLC. Scientific Reports, 11(1), 19027. https://doi.org/10.1038/s41598-021-98415-9

    Article  CAS  Google Scholar 

  • Salleh, M. A. M., Mahmoud, D. K., Karim, W. A. W. A., & Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 280(1–3), 1–13. https://doi.org/10.1016/j.desal.2011.07.019

    Article  CAS  Google Scholar 

  • Sassi, W., Ghanmi, I., Oulego, P., Collado, S., Ammar, S., & Díaz, M. (2023). Pomegranate peel-derived biochar as ecofriendly adsorbent of aniline-based dyes removal from wastewater. Clean Technologies and Environmental Policy, 1–17. https://doi.org/10.1007/s10098-023-02522-2

  • Sekhar, C. P., Kalidhasan, S., Rajesh, V., & Rajesh, N. (2009). Bio-polymer adsorbent for the removal of malachite green from aqueous solution. Chemosphere, 77(6), 842–847. https://doi.org/10.1016/j.chemosphere.2009.07.068

    Article  CAS  Google Scholar 

  • Şenol, Z. M., Messaoudi, N. E., Fernine, Y., & Keskin, Z. S. (2023). Bioremoval of rhodamine B dye from aqueous solution by using agricultural solid waste (almond shell): Experimental and DFT modeling studies. Biomass Conversion and Biorefinery, 1–14. https://doi.org/10.1007/s13399-023-03781-1

  • Sharma, Y. C. (2009). Fast removal of malachite green by adsorption on rice husk activated carbon. The Open Environmental Pollution & Toxicology Journal, 1(1). https://doi.org/10.2174/1876397900901010074

  • Shokoohi, R., Samadi, M. T., Amani, M., & Poureshgh, Y. (2018). Modeling and optimization of removal of cefalexin from aquatic solutions by enzymatic oxidation using experimental design. Brazilian Journal of Chemical Engineering, 35, 943–956. https://doi.org/10.1590/0104-6632.20180353s20170383

    Article  CAS  Google Scholar 

  • Simonin, J. P. (2016). On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chemical Engineering Journal, 300, 254–263. https://doi.org/10.1016/j.cej.2016.04.079

    Article  CAS  Google Scholar 

  • Singh, K., & Mohan, S. (2004). Adsorption behavior of selected monosaccharides onto an alumina interface. Journal of Colloid and Interface Science, 270(1), 21–28. https://doi.org/10.1016/j.jcis.2003.05.002

    Article  CAS  Google Scholar 

  • Singh, K., Bharose, R., Singh, V. K., & Verma, S. K. (2011). Sugar decolorization through selective adsorption onto functionalized Accurel hydrophobic polymeric support. Industrial & Engineering Chemistry Research, 50(17), 10074–10082. https://doi.org/10.1021/ie200501p

    Article  CAS  Google Scholar 

  • Singh, K., Kumar, A., Awasthi, S., Pandey, S. K., & Mishra, P. (2019). Adsorption mechanism of carboxymethyl cellulose onto mesoporous mustard carbon: Experimental and theoretical aspects. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 581, 123786. https://doi.org/10.1016/j.colsurfa.2019.123786

    Article  CAS  Google Scholar 

  • Singh, K., Dixit, U., & Lata, M. (2023). Surface activity, kinetics, thermodynamics and comparative study of adsorption of selected cationic and anionic dyes onto H3PO4-functionalized bagasse from aqueous stream. Environmental Science and Pollution Research, 1–17. https://doi.org/10.1007/s11356-023-29870-2

  • Srivastava, S., Sinha, R., & Roy, D. (2004). Toxicological effects of malachite green. Aquatic Toxicology, 66(3), 319–329. https://doi.org/10.1016/j.aquatox.2003.09.008

    Article  CAS  Google Scholar 

  • Suhaimi, N., Kooh, M. R. R., Lim, C. M., Chou Chao, C. T., Chou Chau, Y. F., Mahadi, A. H., Chiang, H. P., Haji Hassan, N. H., & Thotagamuge, R. (2022). The use of gigantochloa bamboo-derived biochar for the removal of methylene blue from aqueous solution. Adsorption Science & Technology, 2022, 1–12. https://doi.org/10.1155/2022/8245797

    Article  CAS  Google Scholar 

  • Swan, N. B., & Zaini, M. A. A. (2019). Adsorption of malachite green and congo red dyes from water: Recent progress and future outlook. Ecological Chemistry and Engineering, 26(1), 119–132.

    Article  CAS  Google Scholar 

  • Türgay, O., Ersöz, G., Atalay, S., Forss, J., & Welander, U. (2011). The treatment of azo dyes found in textile industry wastewater by anaerobic biological method and chemical oxidation. Separation and Purification Technology, 79(1), 26–33. https://doi.org/10.1016/j.biortech.2013.07.066

    Article  CAS  Google Scholar 

  • Vigneshwaran, S., Sirajudheen, P., Karthikeyan, P., & Meenakshi, S. (2021). Fabrication of sulfur-doped biochar derived from tapioca peel waste with superior adsorption performance for the removal of Malachite green and Rhodamine B dyes. Surfaces and Interfaces, 23, 100920. https://doi.org/10.1016/j.surfin.2020.100920

    Article  CAS  Google Scholar 

  • Vijayalakshmidevi, S. R., & Muthukumar, K. (2015). Improved biodegradation of textile dye effluent by coculture. Ecotoxicology and Environmental Safety, 114, 23–30. https://doi.org/10.1016/j.ecoenv.2014.09.039

    Article  CAS  Google Scholar 

  • Vijayaraghavan, K. T. V. N., Padmesh, T. V. N., Palanivelu, K., & Velan, M. (2006). Biosorption of nickel (II) ions onto Sargassum wightii: Application of two-parameter and three-parameter isotherm models. Journal of Hazardous Materials, 133, 304–308. https://doi.org/10.1016/j.jhazmat.2005.10.016

    Article  CAS  Google Scholar 

  • Wang, X. S., Zhou, Y., Jiang, Y., & Sun, C. (2008). The removal of basic dyes from aqueous solutions using agricultural by-products. Journal of Hazardous Materials, 157(2–3), 374–385. https://doi.org/10.1016/j.jhazmat.2008.01.004

    Article  CAS  Google Scholar 

  • **e, Z., Guan, W., Ji, F., Song, Z., & Zhao, Y. (2014). Production of biologically activated carbon from orange peel and landfill leachate subsequent treatment technology. Journal of Chemistry, 2014. https://doi.org/10.1155/2014/491912

  • **ng, Y., & Wang, G. (2009). Poly (methacrylic acid)-modified sugarcane bagasse for enhanced adsorption of cationic dye. Environmental Technology, 30(6), 611–619. https://doi.org/10.1080/09593330902838098

    Article  CAS  Google Scholar 

  • **ong, C., Jia, Q., Chen, X., Wang, G., & Yao, C. (2013). Optimization of polyacrylonitrile-2-aminothiazole resin synthesis, characterization, and its adsorption performance and mechanism for removal of Hg (II) from aqueous solutions. Industrial & Engineering Chemistry Research, 52(14), 4978–4986. https://doi.org/10.1021/ie3033312

    Article  CAS  Google Scholar 

  • **ong, C., Zheng, Y., Feng, Y., Yao, C., Ma, C., Zheng, X., & Jiang, J. (2014). Preparation of a novel chloromethylated polystyrene-2-amino-1, 3, 4-thiadiazole chelating resin and its adsorption properties and mechanism for separation and recovery of Pt (IV) from aqueous solutions. Journal of Materials Chemistry A, 2(15), 5379–5386. https://doi.org/10.1039/C3TA14923D

    Article  CAS  Google Scholar 

  • Yıldız, D., Demir, I., & Demiral, H. (2023). Adsorption of malachite green on to poplar sawdust activated carbon. Separation Science and Technology, 58(12), 2099–2114. https://doi.org/10.1080/01496395.2023.2240492

    Article  CAS  Google Scholar 

  • شکوهی, ص., صمدی, امانی, & پورعشق, (2018). Optimizing laccase-mediated amoxicillin removal by the use of box–behnken design in an aqueous solution. Desalination and Water Treatment, 119, 53-63.

Download references

Acknowledgements

The authors also acknowledge the National Sugar Institute, Kanpur, for providing some experimental facilities. Utkarsh Dixit is grateful to UGC, New Delhi, for its financial support (UGC-JRF-191620022543).

Author information

Authors and Affiliations

Authors

Contributions

Utkarsh Dixit: conceptualization, investigation, validation, methodology, writing—original draft. Kaman Singh: conceptualization, investigation, validation, methodology, supervision, data curation, review and editing. Sudhanshu Mohan: conceptualization, investigation, validation, methodology, supervision. Alok Kumar Singh: data curation, writing—original draft. Arun Kumar: data curation, writing—original draft.

Corresponding author

Correspondence to Kaman Singh.

Ethics declarations

Ethical approval and consent to participate

All authors have read and understood and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors. All the authors have their consent in submitting the manuscript to the journal “Environmental Monitoring and Assessment.”

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 508 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixit, U., Singh, K., Mohan, S. et al. Surface activity, mechanisms, kinetics, and thermodynamic study of adsorption of malachite green dye onto sulfuric acid–functionalized Moringa oleifera leaves from aqueous solution. Environ Monit Assess 196, 78 (2024). https://doi.org/10.1007/s10661-023-12234-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-12234-1

Keywords

Navigation