Log in

First surveillance of pesticides in soils of the perimeter of Tadla, a Moroccan sugar beet intensive area

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

With the long-term application of pesticides on sugar beet farms in the irrigated perimeter of Tadla in Morocco for over 50 years, pesticide monitoring is necessary to assess soil health. The objective of our study was to monitor multiple pesticide residues in topsoil samples collected from post-harvest sugar beet fields and verify their migration to deep soil layers. Topsoil and deep soil samples were collected from arbitrarily selected sugar beet fields in the IPT. In this study, a target-screening method was applied. All target pesticides were detected in soil samples, with tefluthrin being the most frequently detected pesticide. The residue with the highest concentration in soil samples was DDE. All the soil samples contained a mixture of pesticide residues, with a maximum of 13 residues per sample. The total pesticide content decreased toward more profound layers of soil, except in one field where it reached a concentration of 348 µg/kg at the deeper soil layer. For pesticides detected at the three soil depths, only tefluthrin concentration increased in the deep soil layer. The results provide comprehensive and precise information on the pesticide residue status in sugar beet soils warning against the multiple risks that this contamination can cause. This study indicates the need of regular monitoring of pesticides over a large area of the perimeter to enable decision-makers to pronounce the impacts of the extension and intensification of sugar beet cultivation at the irrigated perimeter of Tadla.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Aigner, E. J., Leone, A. D., & Falconer, R. L. (1998). Concentrations and enantiomeric ratios of organochlorine pesticides in soils from the U.S. corn belt. Environmental Science and Technology, 32, 1162–1168. https://doi.org/10.1021/es970750h

    Article  CAS  Google Scholar 

  • Aktar, W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: Their benefits and hazards. Interdisciplinary Toxicology, 2, 1–12. https://doi.org/10.2478/v10102-009-0001-7

    Article  Google Scholar 

  • Alavanja, M. C. R., & Bonner, M. R. (2012). Occupational pesticide exposures and cancer risk: A review. Journal of Toxicology & Environmental Health Part b: Critical Reviews, 15, 238–263. https://doi.org/10.1080/10937404.2012.632358

    Article  CAS  Google Scholar 

  • Arrouays, D., Antoni, V., Bardy, M., Bispo, A., Brossard, M., Jolivet, C., Le Bas, C., Martin, M., Saby, N., Schnebelen, N., Villanneau, E., & Stengel, P. (2012). Soil fertility: Conclusions of the report on the state of the soils in France. Innovations Agronomiques, 21, 1–11.

    Google Scholar 

  • Aryal, N., Wood, J., Rijal, I., Deng, D., Jha, M. K., & Ofori-Boadu, A. (2020). Fate of environmental pollutants: A review. Water Environment Research, 92, 1587–1594. https://doi.org/10.1002/wer.1404

    Article  CAS  Google Scholar 

  • Bernhardt, E. S., Rosi, E. J., & Gessner, M. O. (2017). Synthetic chemicals as agents of global change. Frontiers in Ecology and the Environment, 15, 84–90. https://doi.org/10.1002/fee.1450

    Article  Google Scholar 

  • Bevan, R., Brown, T., Matthies, F., Sams, C., Jones, K., Hanlon, J., & La Vedrine, M. (2017). Human biomonitoring data collection from occupational exposure to pesticides. EFSA Support. Publ., 14, 1185E. https://doi.org/10.2903/sp.efsa.2017.EN-1185

    Article  Google Scholar 

  • Bragança, I., Lemos, P.C., Delerue-Matos, C., Domingues, V.F. (2019). Assessment of pyrethroid pesticides in topsoils in northern Portugal. Water, Air, & Soil Pollution, 230.

  • Cáceres, T., Megharaj, M., Venkateswarlu, K., Sethunathan, N., & Naidu, R. (2010). Fenamiphos and related organophosphorus pesticides: environmental fate and toxicology. Reviews of Environmental Contamination and Toxicology, 205, 117–62. https://doi.org/10.1007/978-1-4419-5623-1_3

  • Cheng, S. (2003). Heavy metal pollution in China: Origin, pattern and control. Environmental Science and Pollution Research International, 10, 192–198. https://doi.org/10.1065/espr2002.11.141.1

    Article  CAS  Google Scholar 

  • Chiaia-Hernandez, A. C., Keller, A., Wächter, D., Steinlin, C., Camenzuli, L., Hollender, J., & Krauss, M. (2017). Long-term persistence of pesticides and TPs in archived agricultural soil samples and comparison with pesticide application. Environmental Science and Technology, 51, 10642–10651. https://doi.org/10.1021/acs.est.7b02529

    Article  CAS  Google Scholar 

  • Committee, E. S., More, S. J., Bampidis, V., Benford, D., Bennekou, S. H., Bragard, C., Halldorsson, T. I., Hernández-Jerez, A. F., Koutsoumanis, K., Naegeli, H., Schlatter, J. R., Silano, V., Nielsen, S. S., Schrenk, D., Turck, D., Younes, M., Benfenati, E., Castle, L., Cedergreen, N., … Hogstrand, C. (2019). Guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals. EFSA Journal, 17, e05634. https://doi.org/10.2903/j.efsa.2019.5634

    Article  Google Scholar 

  • Coronado, G. D., Holte, S., Vigoren, E., Griffith, W. C., Faustman, E., & Thompson, B. (2011). Organophosphate pesticide exposure and residential proximity to nearby fields: Evidence for the drift pathway. Journal of occupational and environmental medicine, 53, 884–891. https://doi.org/10.1097/JOM.0b013e318222f03a

    Article  CAS  Google Scholar 

  • Dankyi, E., Gordon, C., Carboo, D., & Fomsgaard, I. S. (2014). Quantification of neonicotinoid insecticide residues in soils from cocoa plantations using a QuEChERS extraction procedure and LC-MS/MS. Science of the Total Environment, 499, 276–283. https://doi.org/10.1016/j.scitotenv.2014.08.051

    Article  CAS  Google Scholar 

  • de Groot, R., Brander, L., van der Ploeg, S., Costanza, R., Bernard, F., Braat, L., Christie, M., Crossman, N., Ghermandi, A., Hein, L., Hussain, S., Kumar, P., McVittie, A., Portela, R., Rodriguez, L. C., ten Brink, P., & van Beukering, P. (2012). Global estimates of the value of ecosystems and their services in monetary units. Ecosystem Services, 1, 50–61. https://doi.org/10.1016/j.ecoser.2012.07.005

    Article  Google Scholar 

  • EU Pesticides Database - MRLs [WWW Document], n.d. URL https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/start/screen/mrls (accessed 6.9.23).

  • Froger, C., Jolivet, C., Budzinski, H., Pierdet, M., Caria, G., Saby, N. P. A., Arrouays, D., & Bispo, A. (2023). Pesticide residues in French soils: Occurrence, risks, and persistence. Environmental Science and Technology, 57, 7818–7827. https://doi.org/10.1021/acs.est.2c09591

    Article  CAS  Google Scholar 

  • García, M. G., Sánchez, J. I. L., Bravo, K. A. S., Cabal, M. D. C., & Pérez-Santín, E. (2022). Review: Presence, distribution and current pesticides used in Spanish agricultural practices. Science of the Total Environment, 845, 157291. https://doi.org/10.1016/j.scitotenv.2022.157291

    Article  CAS  Google Scholar 

  • Geissen, V., Silva, V., Lwanga, E. H., Beriot, N., Oostindie, K., Bin, Z., Pyne, E., Busink, S., Zomer, P., Mol, H., & Ritsema, C. J. (2021). Cocktails of pesticide residues in conventional and organic farming systems in Europe – Legacy of the past and turning point for the future. Environmental Pollution, 278, 116827. https://doi.org/10.1016/j.envpol.2021.116827

    Article  CAS  Google Scholar 

  • Hallmann, C. A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., Stenmans, W., Müller, A., Sumser, H., Hörren, T., Goulson, D., & de Kroon, H. (2017). More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE, 12, e0185809. https://doi.org/10.1371/journal.pone.0185809

    Article  CAS  Google Scholar 

  • Han, Y., Mo, R., Yuan, X., Zhong, D., Tang, F., Ye, C., & Liu, Y. (2017). Pesticide residues in nut-planted soils of China and their relationship between nut/soil. Chemosphere, 180, 42–47. https://doi.org/10.1016/j.chemosphere.2017.03.138

    Article  CAS  Google Scholar 

  • Hvězdová, M., Kosubová, P., Košíková, M., Scherr, K. E., Šimek, Z., Brodský, L., Šudoma, M., Škulcová, L., Sáňka, M., Svobodová, M., Krkošková, L., Vašíčková, J., Neuwirthová, N., Bielská, L., & Hofman, J. (2018). Currently and recently used pesticides in Central European arable soils. Science of the Total Environment, 613–614, 361–370. https://doi.org/10.1016/j.scitotenv.2017.09.049

    Article  CAS  Google Scholar 

  • IUPAC PPDB Search [WWW Document]. (n.d.). https://sitem.herts.ac.uk/aeru/iupac/search.htm. Accessed 6.9.2023.

  • Kapsi, M., Tsoutsi, C., Paschalidou, A., & Albanis, T. (2019). Environmental monitoring and risk assessment of pesticide residues in surface waters of the Louros River (N.W. Greece). Science of the Total Environment, 650, 2188–2198. https://doi.org/10.1016/j.scitotenv.2018.09.185

    Article  CAS  Google Scholar 

  • Khreit, O. I. G., Awamy, I. O. E., & Abduljalil, O. A. (2020). Development, validation, and application of a method based on reverse-phase HPLC for the simultaneous determination of six organochlorine pesticides in surface and groundwater samples collected from northeast Libya. Al-Mukhtar Journal of Sciences, 35, 116–129. https://doi.org/10.54172/mjsc.v35i2.325

    Article  Google Scholar 

  • King, A. M., & Aaron, C. K. (2015). Organophosphate and carbamate poisoning. Emerg. Med. Clin. North Am. Management of Hazardous Material Emergencies, 33, 133–151. https://doi.org/10.1016/j.emc.2014.09.010

    Article  Google Scholar 

  • Kopittke, P. M., Menzies, N. W., Wang, P., McKenna, B. A., & Lombi, E. (2019). Soil and the intensification of agriculture for global food security. Environment International, 132, 105078. https://doi.org/10.1016/j.envint.2019.105078

    Article  Google Scholar 

  • Kosubová, P., Škulcová, L., Poláková, Š, Hofman, J., & Bielská, L. (2020). Spatial and temporal distribution of the currently-used and recently-banned pesticides in arable soils of the Czech Republic. Chemosphere, 254, 126902. https://doi.org/10.1016/j.chemosphere.2020.126902

    Article  CAS  Google Scholar 

  • Kumar, B., Verma, V. K., Mishra, M., Gaur, R., Kumar, S., & Sharma, C. S. (2014). DDT and HCH (organochlorine pesticides) in residential soils and health assessment for human populations in Korba, India. Human and Ecological Risk Assessment: An International Journal, 20, 1538–1549. https://doi.org/10.1080/10807039.2013.858563

    Article  CAS  Google Scholar 

  • Kumar, S., Kaushik, G., & Villarreal-Chiu, J. F. (2016). Scenario of organophosphate pollution and toxicity in India: A review. Environmental Science and Pollution Research, 23, 9480–9491. https://doi.org/10.1007/s11356-016-6294-0

    Article  CAS  Google Scholar 

  • Kumar, G., Lal, S., Soni, S. K., Maurya, S. K., Shukla, P. K., Chaudhary, P., Bhattacherjee, A. K., & Garg, N. (2022). Mechanism and kinetics of chlorpyrifos co-metabolism by using environment restoring microbes isolated from rhizosphere of horticultural crops under subtropics.  Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.891870

  • Li, H., Gong, W., Lv, W., Wang, Y., Dong, W., & Lu, A. (2023). Target and suspect screening of pesticide residues in soil samples from peach orchards using liquid chromatography quadrupole time-of-flight mass spectrometry. Ecotoxicology and Environmental Safety, 253, 114664. https://doi.org/10.1016/j.ecoenv.2023.114664

    Article  CAS  Google Scholar 

  • Liu, D., Keesing, J. K., He, P., Wang, Z., Shi, Y., & Wang, Y. (2013). The world’s largest macroalgal bloom in the Yellow Sea, China: Formation and implications. Estuarine, Coastal and Shelf Science, 129, 2–10. https://doi.org/10.1016/j.ecss.2013.05.021

    Article  CAS  Google Scholar 

  • Liu, Y., Li, S., Ni, Z., Qu, M., Zhong, D., Ye, C., & Tang, F. (2016). Pesticides in persimmons, jujubes and soil from China: Residue levels, risk assessment and relationship between fruits and soils. Science of the Total Environment, 542, 620–628. https://doi.org/10.1016/j.scitotenv.2015.10.148

    Article  CAS  Google Scholar 

  • Liu, Y., Lonappan, L., Brar, S. K., & Yang, S. (2018). Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides: A review. Science of the Total Environment, 645, 60–70. https://doi.org/10.1016/j.scitotenv.2018.07.099

    Article  CAS  Google Scholar 

  • Lozowicka, B. (2015). Health risk for children and adults consuming apples with pesticide residue. Science of the Total Environment, 502, 184–198. https://doi.org/10.1016/j.scitotenv.2014.09.026

    Article  CAS  Google Scholar 

  • Lupi, L., Bedmar, F., Wunderlin, D. A., & Miglioranza, K. S. B. (2019). Levels of organochlorine pesticides in soils, mesofauna and streamwater from an agricultural watershed in Argentina. Environmental Earth Sciences, 78, 569.

  • Masiá, A., Campo, J., Navarro-Ortega, A., Barceló, D., & Picó, Y. (2015). Pesticide monitoring in the basin of Llobregat River (Catalonia, Spain) and comparison with historical data. Sci. Total Environ. Towards a Better Understanding of the Links between Stressors, Hazard Assessment and Ecosystem Services under Water Scarcity, 503–504, 58–68. https://doi.org/10.1016/j.scitotenv.2014.06.095

    Article  CAS  Google Scholar 

  • Matthews, G., Zaim, M., Yadav, R. S., Soares, A., Hii, J., Ameneshewa, B., Mnzava, A., Dash, A. P., Ejov, M., Tan, S. H., & van den Berg, H. (2011). Status of legislation and regulatory control of public health pesticides in countries endemic with or at risk of major vector-borne diseases. Environmental Health Perspectives, 119, 1517–1522. https://doi.org/10.1289/ehp.1103637

    Article  Google Scholar 

  • Medina-Pastor, P., & Triacchini, G. (2020). The 2018 European Union report on pesticide residues in food. EFSA Journal, 18, e06057. https://doi.org/10.2903/j.efsa.2020.6057

    Article  Google Scholar 

  • Ministry of Agriculture, Maritime Fisheries, Rural Development and Water and Forests (MAPMDREF). 2022. Index phytosanitaire [Phytosanitary Index]. https://www.agrimaroc.ma/index-phytosanitaire-maroc/ (accessed 11.1.23).

  • Muir, D., Zhang, X., de Wit, C. A., Vorkamp, K., & Wilson, S. (2019). Identifying further chemicals of emerging arctic concern based on ‘in silico’ screening of chemical inventories. Emerging Contaminants, 5, 201–210. https://doi.org/10.1016/j.emcon.2019.05.005

    Article  Google Scholar 

  • Murugan, A. V., Swarnam, T. P., & Gnanasambandan, S. (2013). Status and effect of pesticide residues in soils under different land uses of Andaman Islands India. Environmental Monitoring and Assessment, 185, 8135–8145. https://doi.org/10.1007/s10661-013-3162-y

    Article  CAS  Google Scholar 

  • Olisah, C., Okoh, O. O., & Okoh, A. I. (2020). Occurrence of organochlorine pesticide residues in biological and environmental matrices in Africa: A two-decade review. Heliyon, 6(3). https://doi.org/10.1016/j.heliyon.2020.e03518

  • Osesua, B. A., Tsafe, A. I., Birnin-Yauri, U. A., & Sahabi, D. M. (2017). Determination of pesticide residues in soil samples collected from Wurno irrigation farm, Sokoto State Nigeria. Cont. Journal of Agricultural Science, 11, 40–52. https://doi.org/10.5281/zenodo.546475

    Article  Google Scholar 

  • Pan, H., Lei, H., He, X., **, B., & Xu, Q. (2019). Spatial distribution of organochlorine and organophosphorus pesticides in soil-groundwater systems and their associated risks in the middle reaches of the Yangtze River Basin. Environmental Geochemistry and Health, 41, 1833–1845. https://doi.org/10.1007/s10653-017-9970-1

    Article  CAS  Google Scholar 

  • Panico, S. C., van Gestel, C. A. M., Verweij, R. A., Rault, M., Bertrand, C., Menacho Barriga, C. A., Coeurdassier, M., Fritsch, C., Gimbert, F., & Pelosi, C. (2022). Field mixtures of currently used pesticides in agricultural soil pose a risk to soil invertebrates. Environmental Pollution, 305, 119290. https://doi.org/10.1016/j.envpol.2022.119290

    Article  CAS  Google Scholar 

  • Patel, R. (2009). Food sovereignty. The Journal of Peasant Studies, 36, 663–706. https://doi.org/10.1080/03066150903143079

    Article  Google Scholar 

  • Pereira, J. L., Antunes, S. C., Castro, B. B., Marques, C. R., Gonçalves, A. M. M., Gonçalves, F., & Pereira, R. (2009). Toxicity evaluation of three pesticides on non-target aquatic and soil organisms: Commercial formulation versus active ingredient. Ecotoxicology, 18, 455–463. https://doi.org/10.1007/s10646-009-0300-y

    Article  CAS  Google Scholar 

  • Picó, Y., Alvarez-Ruiz, R., Alfarhan, A. H., El-Sheikh, M. A., Alshahrani, H. O., & Barceló, D. (2020). Pharmaceuticals, pesticides, personal care products and microplastics contamination assessment of Al-Hassa irrigation network (Saudi Arabia) and its shallow lakes. Science of the Total Environment, 701, 135021. https://doi.org/10.1016/j.scitotenv.2019.135021

    Article  CAS  Google Scholar 

  • Prado-Lu, D., & Leilanie, J. (2015). Insecticide residues in soil, water, and eggplant fruits and farmers’ health effects due to exposure to pesticides. Environmental Health and Preventive Medicine, 20, 53–62. https://doi.org/10.1007/s12199-014-0425-3

    Article  CAS  Google Scholar 

  • Primost, J. E., Marino, D. J. G., Aparicio, V. C., Costa, J. L., & Carriquiriborde, P. (2017). Glyphosate and AMPA, “pseudo-persistent” pollutants under real-world agricultural management practices in the Mesopotamic Pampas agroecosystem. Argentina. Environ. Pollut. Barking Essex, 229, 771–779. https://doi.org/10.1016/j.envpol.2017.06.006

    Article  CAS  Google Scholar 

  • Qu, C., Albanese, S., Chen, W., Lima, A., Doherty, A. L., Piccolo, A., Arienzo, M., Qi, S., & De Vivo, B. (2016). The status of organochlorine pesticide contamination in the soils of the Campanian Plain, southern Italy, and correlations with soil properties and cancer risk. Environmental Pollution, 216, 500–511. https://doi.org/10.1016/j.envpol.2016.05.089

    Article  CAS  Google Scholar 

  • Qu, C., Albanese, S., Li, J., Cicchella, D., Zuzolo, D., Hope, D., Cerino, P., Pizzolante, A., Doherty, A. L., Lima, A., & De Vivo, B. (2019a). Organochlorine pesticides in the soils from Benevento provincial territory, southern Italy: Spatial distribution, air-soil exchange, and implications for environmental health. Science of the Total Environment, 674, 159–170. https://doi.org/10.1016/j.scitotenv.2019.04.029

    Article  CAS  Google Scholar 

  • Qu, C., Albanese, S., Lima, A., Hope, D., Pond, P., Fortelli, A., Romano, N., Cerino, P., Pizzolante, A., & De Vivo, B. (2019b). The occurrence of OCPs, PCBs, and PAHs in the soil, air, and bulk deposition of the Naples metropolitan area, southern Italy: Implications for sources and environmental processes. Environment International, 124, 89–97. https://doi.org/10.1016/j.envint.2018.12.031

    Article  CAS  Google Scholar 

  • Rafique, N., Tariq, S. R., & Ahmed, D. (2016). Monitoring and distribution patterns of pesticide residues in soil from cotton/wheat fields of Pakistan. Environmental Monitoring and Assessment, 188, 695. https://doi.org/10.1007/s10661-016-5668-6

    Article  CAS  Google Scholar 

  • Rhoades, J. D. (1982). Soluble salts. In A. L. Page et al. (Eds.), Methods of soil analysis: part 2: chemical and microbiological properties. Monograph Number 9 (2nd Ed., pp 167–179). ASA, Madison, WI. https://doi.org/10.2134/agronmonogr9.2.2ed.c10

  • Riedo, J., Wettstein, F. E., Rösch, A., Herzog, C., Banerjee, S., Büchi, L., Charles, R., Wächter, D., Martin-Laurent, F., Bucheli, T. D., Walder, F., & van der Heijden, M. G. A. (2021). Widespread occurrence of pesticides in organically managed agricultural soils—The ghost of a conventional agricultural past? Environmental Science and Technology, 55, 2919–2928. https://doi.org/10.1021/acs.est.0c06405

    Article  CAS  Google Scholar 

  • Rimayi, C., Odusanya, D., Weiss, J. M., de Boer, J., & Chimuka, L. (2018). Seasonal variation of chloro-s-triazines in the Hartbeespoort Dam catchment. South Africa. Sci. Total Environ., 613–614, 472–482. https://doi.org/10.1016/j.scitotenv.2017.09.119

    Article  CAS  Google Scholar 

  • Sabbe, W. E., Marx, D. B. (1987). Soil sampling: spatial and temporal variability. In J. R. Brown (Ed.), Soil testing: sampling, correlation, calibration, and interpretation. https://doi.org/10.2136/sssaspecpub21.c1

  • Sabzevari, S., & Hofman, J. (2022). A worldwide review of currently used pesticides’ monitoring in agricultural soils. Science of the Total Environment, 812, 152344. https://doi.org/10.1016/j.scitotenv.2021.152344

    Article  CAS  Google Scholar 

  • Scherr, K. E., Bielská, L., Kosubová, P., Dinisová, P., Hvězdová, M., Šimek, Z., & Hofman, J. (2017). Occurrence of Chlorotriazine herbicides and their transformation products in arable soils. Environmental Pollution, 222, 283–293. https://doi.org/10.1016/j.envpol.2016.12.043

    Article  CAS  Google Scholar 

  • Schleiffer, M., & Speiser, B. (2022). Presence of pesticides in the environment, transition into organic food, and implications for quality assurance along the European organic food chain – A review. Environmental Pollution, 313, 120116. https://doi.org/10.1016/j.envpol.2022.120116

    Article  CAS  Google Scholar 

  • Schulze, S., Zahn, D., Montes, R., Rodil, R., Quintana, J. B., Knepper, T. P., Reemtsma, T., & Berger, U. (2019). Occurrence of emerging persistent and mobile organic contaminants in European water samples. Water Research, 153, 80–90. https://doi.org/10.1016/j.watres.2019.01.008

    Article  CAS  Google Scholar 

  • Serra, A.-A., Bittebière, A.-K., Mony, C., Slimani, K., Pallois, F., Renault, D., Couée, I., Gouesbet, G., & Sulmon, C. (2020). Local-scale dynamics of plant-pesticide interactions in a northern Brittany agricultural landscape. Science of the Total Environment, 744, 140772. https://doi.org/10.1016/j.scitotenv.2020.140772

    Article  CAS  Google Scholar 

  • Shackelford, G. E., Steward, P. R., German, R. N., Sait, S. M., & Benton, T. G. (2015). Conservation planning in agricultural landscapes: Hotspots of conflict between agriculture and nature. Diversity and Distributions, 21, 357–367. https://doi.org/10.1111/ddi.12291

    Article  Google Scholar 

  • Shegunova, P., Klánová, J., & Holoubek, I. (2007). Residues of organochlorinated pesticides in soils from the Czech Republic. Environmental Pollution, 146, 257–261. https://doi.org/10.1016/j.envpol.2006.03.057

    Article  CAS  Google Scholar 

  • Sidhu, G. K., Singh, S., Kumar, V., Dhanjal, D. S., Datta, S., & Singh, J. (2019). Toxicity, monitoring and biodegradation of organophosphate pesticides: A review. Critical Reviews in Environment Science and Technology, 49, 1135–1187. https://doi.org/10.1080/10643389.2019.1565554

    Article  CAS  Google Scholar 

  • Silva, V., Montanarella, L., Jones, A., Fernández-Ugalde, O., Mol, H. G. J., Ritsema, C. J., & Geissen, V. (2018). Distribution of glyphosate and aminomethylphosphonic acid (AMPA) in agricultural topsoils of the European Union. Science of the Total Environment, 621, 1352–1359. https://doi.org/10.1016/j.scitotenv.2017.10.093

    Article  CAS  Google Scholar 

  • Silva, V., Mol, H. G. J., Zomer, P., Tienstra, M., Ritsema, C. J., & Geissen, V. (2019). Pesticide residues in European agricultural soils – A hidden reality unfolded. Science of the Total Environment, 653, 1532–1545. https://doi.org/10.1016/j.scitotenv.2018.10.441

    Article  CAS  Google Scholar 

  • Sorensen, J. P. R., Lapworth, D. J., Nkhuwa, D. C. W., Stuart, M. E., Gooddy, D. C., Bell, R. A., Chirwa, M., Kabika, J., Liemisa, M., Chibesa, M., & Pedley, S. (2015). Emerging contaminants in urban groundwater sources in Africa. Water Res., Occurrence, fate, removal and assessment of emerging contaminants in water in the water cycle (from wastewater to drinking water). Water Research, 72, 51–63. https://doi.org/10.1016/j.watres.2014.08.002

    Article  CAS  Google Scholar 

  • Souza, M. C. O., Cruz, J. C., Cesila, C. A., Gonzalez, N., Rocha, B. A., Adeyemi, J. A., Nadal, M., Domingo, J. L., & Barbosa, F. (2023). Recent trends in pesticides in crops: A critical review of the duality of risks-benefits and the Brazilian legislation issue. Environmental Research, 228, 115811. https://doi.org/10.1016/j.envres.2023.115811

    Article  CAS  Google Scholar 

  • Tadla Agricultural Development Office (ORMVAT). (2019) Tadla Perimeter Monograph, ed 2019, Ministry of Agriculture, Maritime Fisheries, Rural Development and Water and Forests, Morocco.

  • Top**, C. J., & Lagisz, M. (2012). Spatial dynamic factors affecting population-level risk assessment for a terrestrial arthropod: An agent-based modeling approach. Human and Ecological Risk Assessment: An International Journal, 18, 168–180. https://doi.org/10.1080/10807039.2012.632292

    Article  CAS  Google Scholar 

  • Uwizeyimana, H., Wang, M., Chen, W., & Khan, K. (2017). The eco-toxic effects of pesticide and heavy metal mixtures towards earthworms in soil. Environmental Toxicology and Pharmacology, 55, 20–29. https://doi.org/10.1016/j.etap.2017.08.001

    Article  CAS  Google Scholar 

  • Van Bruggen, A. H. C., He, M. M., Shin, K., Mai, V., Jeong, K. C., Finckh, M. R., & Morris, J. G. (2018). Environmental and health effects of the herbicide glyphosate. Science of the Total Environment, 616–617, 255–268. https://doi.org/10.1016/j.scitotenv.2017.10.309

    Article  CAS  Google Scholar 

  • Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriaensen, K., Ruttens, A., Thewys, T., Vassilev, A., Meers, E., Nehnevajova, E., van der Lelie, D., & Mench, M. (2009). Phytoremediation of contaminated soils and groundwater: Lessons from the field. Environmental Science and Pollution Research, 16, 765–794. https://doi.org/10.1007/s11356-009-0213-6

    Article  CAS  Google Scholar 

  • Villanneau, E. J., Saby, N. P. A., Marchant, B. P., Jolivet, C. C., Boulonne, L., Caria, G., Barriuso, E., Bispo, A., Briand, O., & Arrouays, D. (2011). Which persistent organic pollutants can we map in soil using a large spacing systematic soil monitoring design? A case study in Northern France. Science of the Total Environment, 409, 3719–3731. https://doi.org/10.1016/j.scitotenv.2011.05.048

    Article  CAS  Google Scholar 

  • Wang, L., Zhang, Z.-F., Liu, L.-Y., Zhu, F.-J., & Ma, W.-L. (2023). National-scale monitoring of historic used organochlorine pesticides (OCPs) and current used pesticides (CUPs) in Chinese surface soil: Old topic and new story. Journal of Hazardous Materials, 443, 130285. https://doi.org/10.1016/j.jhazmat.2022.130285

    Article  CAS  Google Scholar 

  • Yadav, I. C., Devi, N. L., Li, J., Zhang, G., & Shakya, P. R. (2016). Occurrence, profile and spatial distribution of organochlorines pesticides in soil of Nepal: Implication for source apportionment and health risk assessment. Science of the Total Environment, 573, 1598–1606. https://doi.org/10.1016/j.scitotenv.2016.09.133

    Article  CAS  Google Scholar 

  • Yao, R., Yao, S., Ai, T., Huang, J., Liu, Y., & Sun, J. (2023). Organophosphate pesticides and pyrethroids in farmland of the Pearl River Delta, China: Regional residue, distributions and risks. International Journal of Environmental Research and Public Health, 20, 1017. https://doi.org/10.3390/ijerph20021017

    Article  CAS  Google Scholar 

  • Yavari, S., Malakahmad, A., & Sapari, N. B. (2015). Biochar efficiency in pesticides sorption as a function of production variables—A review. Environmental Science and Pollution Research, 22, 13824–13841. https://doi.org/10.1007/s11356-015-5114-2

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Majda Ouhajjou: conceptualization and investigation process, methodology, validation, writing—review and editing; Hanaa Hachimi: conceptualization and investigation process, methodology, validation, writing—review and editing; Mohamed Edahbi: conceptualization and investigation process, methodology, validation, writing—review and editing.

Corresponding author

Correspondence to Majda Ouhajjou.

Ethics declarations

Ethics approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouhajjou, M., Edahbi, M. & Hachimi, H. First surveillance of pesticides in soils of the perimeter of Tadla, a Moroccan sugar beet intensive area. Environ Monit Assess 196, 28 (2024). https://doi.org/10.1007/s10661-023-12182-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-12182-w

Keywords

Navigation