Log in

Free-ranging dogs are seriously threatening Himalayan environment: delineating the high-risk areas for curbing free-ranging dog infestation in the Trans-Himalayan region

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

It is becoming more widely recognised that free-ranging dogs, which have a nearly global distribution, threatening native wildlife. Their increasing population and spread to new areas is of growing concern for the long-term viability of wildlife species. Hence, it is imperative to understand the factors responsible for their infestation and map areas where native species are most vulnerable. Using the random forests algorithm, we modelled the free-ranging dog infestation in the Trans-Himalayan region to pinpoint the high-risk areas where free-ranging dogs are threatening the native wildlife species. We found that the likelihood of free-ranging dog occurrence is most in valley regions and up to 4000 m, often in proximity to roads. Our results also indicated that free-ranging dog prefers areas with wildlife near to protected areas. The predictor variables, such as potential evapotranspiration of the coldest quarter, distance to protected areas, elevation, distance to roads, and potential evapotranspiration of the driest quarter, significantly influence the distribution of the free-ranging dogs. We found that within the Ladakh region of the Trans-Himalayan area, the high-risk zones for free-ranging dogs are located in and around Hemis National Park, Karakoram Wildlife Sanctuary, and Changthang Wildlife Sanctuary. While, in the Lahaul and Spiti region the high-risk areas encompass Pin Valley National Park, Inderkilla National Park, Khirganga National Park, Kugti Wildlife Sanctuary, and several other protected areas. We identified the potentially high-risk areas for implementing strategies to mitigate the possible impact of free-ranging dogs on native wildlife of the Himalayas. Hence, the identified high priority areas can be used for implementing actions for controlling the population growth and further preventing the infestation of the free-ranging dogs into the new areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data can be made available upon request.

References

  • Barbet-Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting pseudo-absences for species distribution models: How, where and how many? Methods in Ecology and Evolution, 3, 327–338.

    Article  Google Scholar 

  • Bassi, E., Canu, A., Firmo, I., Mattioli, L., Scandura, M., & Apollonio, M. (2017). Trophic overlap between wolves and free-ranging wolf × dog hybrids in the Apennine Mountains, Italy. Global Ecology and Conservation, 9, 39–49. https://doi.org/10.1016/j.gecco.2016.11.002

    Article  Google Scholar 

  • Bellard, C., Genovesi, P., & Jeschke, J. M. (2016). Global patterns in threats to vertebrates by biological invasions. Proceedings of the Royal Society B: Biological Sciences, 283, 20152454–20152459. https://doi.org/10.1098/rspb.2015.2454

    Article  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  • Butler, J. R. A., & Du Toit, J. (2002). Diet of free-ranging domestic dogs (Canis familiaris) in rural Zimbabwe: Implications for wild scavengers on the periphery of wildlife reserves. Animal Conservation, 5, 29–37.

    Article  Google Scholar 

  • Butler, J. R. A., Du Toit, J. T., & Bingham, J. (2004). Free–ranging domestic dogs (Canis familiaris) as predators and prey in rural Zimbabwe: Threats Of Competition and disease to large wild carnivores. Biological Conservation, 115, 369–378.

    Article  Google Scholar 

  • Campos, C. B., Esteves, C. F., Ferraz, K., Crawshaw, P. G., & Verdade, L. M. (2007). Diet of free-ranging cats and dogs in a suburban and rural environment, south-eastern Brazil. Journal of Zoology, 273, 14–20.

    Article  Google Scholar 

  • Chawla, N. V., Lazarevic, A., Hall, L. O., & Bowyer, K. W. (2003). SMOTEboost: Improving prediction of the minority class in boosting. In N. Lavrac, D. Gamberger, L. Todorovski, & H. Blockeel (Eds.), 7th European conference on principles and practice of knowledge discovery in databases. Knowledge discovery in databases: PKDD 2003 (Lecture notes in computer science) (Vol. 2838, pp. 107–119). Springer.

    Chapter  Google Scholar 

  • Chefaoui, R. M., & Lobo, J. M. (2008). Assessing the effects of pseudo-absences on predictive distribution model performance. Ecological Modelling, 210, 478–486.

    Article  Google Scholar 

  • Chen, C., Liaw, A. & Breiman, L. (2004). Using random forest to learn imbalanced data. http://oz.berkeley.edu/users/chenchao/666.pdf. Accessed 15 Feb 2023.

  • Chundawat, R. S., Sharma, K., Gogate, N., Malik, P. K., & Vanak, A. T. (2016). Size matters: scale mismatch between space use patterns of tigers and protected area size in a tropical dry forest. Biological Conservation, 197, 146–153.

    Article  Google Scholar 

  • Craighead, K., Yacelga, M., Wan, H. Y., Vogt, R., & Cushman, S. A. (2022). Scale-dependent seasonal habitat selection by jaguars (Panthera onca) and pumas (Puma concolor) in Panama. Landscape Ecology, 37, 1–18. https://doi.org/10.1007/s10980-021-01335-2

    Article  Google Scholar 

  • Cutler, D. R., Edwards, T. C., Jr., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. (2007). Random forests for classification in ecology. Ecology, 88, 2783–2792. https://doi.org/10.1890/07-0539.1

    Article  Google Scholar 

  • Dai, Y., Peng, G., Wen, C., Zahoor, B., Ma, X. D., Hacker, C., & Xue, Y. (2021). Climate and land use changes shift the distribution and dispersal of two umbrella species in the Hindu Kush Himalayan region. Science of the Total Environment, 777, 146207. https://doi.org/10.1016/j.scitotenv.2021.146207

    Article  CAS  Google Scholar 

  • Daniels, T. J., & Bekoff, M. (1989). Population and social biology of free-ranging dogs, Canis familiaris. Journal of Mammalogy, 70, 754–762.

    Article  Google Scholar 

  • Dar, S. A., Singh, S. K., Wan, H. Y., Kumar, V., Cushman, S. A., & Sathyakumar, S. (2021). Projected climate change threatens Himalayan brown bear habitat more than human land use. Animal Conservation. https://doi.org/10.1111/acv.12671

  • Doherty, T. S., Dickman, C. R., Glen, A. S., Newsome, T. M., Nimmo, D. G., Ritchie, E. G., et al. (2017). The global impacts of domestic dogs on threatened vertebrates. Biological Conservation, 210, 56–59.

    Article  Google Scholar 

  • Dos Santos, C. L., Le Pendu, Y., Giné, G. A., Dickman, C. R., Newsome, T. M., & Cassano, C. R. (2018). Human behaviors determine the direct and indirect impacts of free-ranging dogs on wildlife. Journal of Mammalogy, 99, 1261–1269.

    Article  Google Scholar 

  • ESRI. (2018). ArcGIS Desktop: Release 10.6. Environmental Systems Research Institute.

    Google Scholar 

  • Evans, J. S., & Cushman, S. A. (2009). Gradient modeling of conifer species using random forests. Landscape Ecology, 24, 673–683.

    Article  Google Scholar 

  • Evans, J.S. & Murphy, M.A. (2008). rfUtilities. R package version. 2.1–3. https://cran.rproject.org/package=rfUtilities. Accessed 9 Apr 2023.

  • Feldmann, B. M. (1974). The problem of urban dogs. Science, 185, 903.

    Article  CAS  Google Scholar 

  • Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302–4315.

    Article  Google Scholar 

  • Furtado, M. M., Hayashi, E. M. K., Allendorf, S. D., Coelho, C. J., Jacomo, A. T. A., Megid, J., Filho, J. D. R., Silveira, L., Torres, N. M., & Neto, J. S. F. (2016). Exposure of free-ranging wild carnivores and domestic dogs to canine distemper virus and parvovirus in the Cerrado of central Brazil. EcoHealth, 13, 549–557. https://doi.org/10.1007/s10393-016-1146-4

    Article  Google Scholar 

  • Gompper, M. E. (2014a). Introduction: outlining the ecological influences of a subsidized, domesticated predator. In M. E. Gompper (Ed.), Free-Ranging Dogs and Wildlife Conservation (pp. 1–8). Oxford University Press.

    Google Scholar 

  • Gompper, M. E. (2014b). The dog–human–wildlife interface: assessing the scope of the problem. In M. E. Gompper (Ed.), Free-Ranging Dogs and Wildlife Conservation (pp. 9–54). Oxford University Press.

    Google Scholar 

  • Home, C., Bhatnagar, Y. V., & Vanak, A. T. (2017). Canine Conundrum: domestic dogs as an invasive species and their impacts on wildlife in India. Animal Conservation, 21, 275–282.

    Article  Google Scholar 

  • Home, C., Pal, R., Sharma, R. K., Suryawanshi, K. R., Bhatnagar, Y. V., & Vanak, A. T. (2017). Commensal in conflict: Livestock depredation patterns by free-ranging domestic dogs in the Upper Spiti Landscape, Himachal Pradesh, India. Ambio, 46, 655–666.

    Article  Google Scholar 

  • Hughes, J., & Macdonald, D. W. (2013). A review of the interactions between free-roaming domestic dogs and wildlife. Biological Conservation, 157, 341–351.

    Article  Google Scholar 

  • Jarvis, A., Reuter, H. I., Nelson, A., & Guevara, E. (2008). Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m Database (http://srtm.csi.cgiar.org). Accessed 19 Jan 2023.

  • Joshi, B. D., Sharief, A., Kumar, V., Kumar, M., Dutta, R., Devi, R., Singh, A., Thakur, M., Sharma, L. K., & Chandra, K. (2019). Field testing of different methods for monitoring mammals in Trans-Himalayas: A case study from Lahaul and Spiti. Global Ecology and Conservation, 21, e00824. https://doi.org/10.1016/j.gecco.2019.e00824

    Article  Google Scholar 

  • Knobel, D. L., Butler, J. R., Lembo, T., Critchlow, R., & Gompper, M. E. (2014). Dogs, disease, and wildlife. In M. E. Gompper (Ed.), Free-ranging Dogs and Wildlife Conservation: 144–169. Oxford University Press.

    Google Scholar 

  • Landis, J. R., & Koch, G. G. (1977). An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics, 33, 363–374.

    Article  CAS  Google Scholar 

  • Leonard, J. A., Echegaray, J., Randi, E., & Vila, C. (2014). Impact of hybridization with domestic dogs on the conservation of wild canids. In M. E. Gompper (Ed.), Free-ranging Dogs and Wildlife Conservation (pp. 170–184). Oxford University Press.

    Google Scholar 

  • Li, R., Xu, M., Wong, M. H. G., Qiu, S., Li, X., Ehrenfeld, D., & Li, D. (2015). Climate change threatens giant panda protection in the 21st century. Biological Conservation, 182, 93–101.

    Article  Google Scholar 

  • Liaw, A., & Wiener, M. (2002). Classification and regression by random Forest. R. News, 2(3), 18–22.

    Google Scholar 

  • Liu, C., White, M., & Newell, G. (2013). Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography, 40, 478–489.

    Article  Google Scholar 

  • Liu, C., White, M., Newell, G., & Griffioen, P. (2013). Species distribution modelling for conservation planning in Victoria, Australia. Ecological Modelling, 249, 68–74.

    Article  Google Scholar 

  • Lobo, J. M., Jiménez-Valverde, A., & Hortal, J. (2010). The uncertain nature of absences and their importance in species distribution modelling. Ecography, 33, 103–114.

    Article  Google Scholar 

  • Mi, C., Huettmann, F., Guo, Y., Han, X., & Wen, L. (2017). Why choose Random Forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence. PeerJ., 5, e2849. https://doi.org/10.7717/peerj.2849

    Article  Google Scholar 

  • Molina, M., & Penaloza, J. (2002). Dog predation on paramo white-tailed deer: the case Mucubaji, Sierra Nevada National Park. Memoria de la Fundación la Salle de Ciencias Naturales, 154, 139–144.

    Google Scholar 

  • Mukherjee, T., Sharma, L. K., Kumar, V., Sharief, A., Dutta, R., Kumar, M., Joshi, B. D., Thakur, M., Venkatraman, C., & Chandra, K. (2021). Adaptive spatial planning of protected area network for conserving the Himalayan brown bear. Science of the Total Environment, 754, 142416. https://doi.org/10.1016/j.scitotenv.2020.142416

    Article  CAS  Google Scholar 

  • Murphy, M. A., Evans, J. S., & Storfer, A. (2010). Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology, 91, 252–261.

    Article  Google Scholar 

  • Nakada, A., Fujita, T., & Sato, H. (1996). A case study of home range and habitat use in 3 free-ranging dogs: Effects of past histories. Journal of Ethology, 14, 139–143. https://doi.org/10.1007/BF02348871

    Article  Google Scholar 

  • Nayeri, D., Mohammadi, A., Qashqaei, A., Vanak, A., & Gompper, M. (2022). Free-ranging dogs as a potential threat to Iranian mammals. Oryx, 56(3), 383–389. https://doi.org/10.1017/S0030605321000090

    Article  Google Scholar 

  • O’Neill, H. M. K., Durant, S. M., & Woodroffe, R. (2020). What wild dogs want: habitat selection differs across life stages and orders of selection in a wide-ranging carnivore. BMC Zoology, 5, 1. https://doi.org/10.1186/s40850-019-0050-0

    Article  Google Scholar 

  • Pal, S. K. (2001). Population ecology of free-ranging urban dogs in West Bengal, India. Acta theriologica, 46, 69–78. https://doi.org/10.1007/BF03192418

    Article  Google Scholar 

  • Pal, S. K. (2003). Reproductive behaviour of free-ranging rural dogs in West Bengal, India. Acta theriologica, 48, 271–281. https://doi.org/10.1007/BF03194167

    Article  Google Scholar 

  • Qiao, H., Soberón, J., & Peterson, A. T. (2015). No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation. Methods in Ecology and Evolution, 6, 1126–1136.

    Article  Google Scholar 

  • Ritchie, E.G., Dickman, C.R., Letnic, M. & Vanak, A.T. (2014). Dogs as predators and trophic regulators M.E. Gompper (Ed.), Free-Ranging Dogs & Wildlife Conservation, Oxford University Press, , pp. 55-68.

    Google Scholar 

  • Sathyakumar, S., & Bashir, T. (2010). Wildlife of the Himalaya: conservation issues and the way forward. In Mountains, Ecosystem and Man (1st ed., pp. 322–343). Soil Conservation Society of India.

    Google Scholar 

  • Sepúlveda, M., Pelican, K., Cross, P., Eguren, A., & Singer, R. (2015). Fine scale movements of rural free-ranging dogs in conservation areas in the temperate rainforest of the coastal range of southern Chile. Mammalian Biology, 80, 290–297.

    Article  Google Scholar 

  • Silva, L. C., Friker, B., Warembourg, C., et al. (2022). Habitat selection by free-roaming domestic dogs in rabies endemic countries in rural and urban settings. Scientific Reports, 12, 20928. https://doi.org/10.1038/s41598-022-25038-z

    Article  CAS  Google Scholar 

  • Silva-Rodríguez, E. A., & Sieving, K. E. (2011). Influence of care of domestic carnivores on their predation on vertebrates. Conservation Biology, 25, 808–815.

    Article  Google Scholar 

  • Silva-Rodrıguez, E. A., & Sieving, K. E. (2012). Domestic dogs shape the landscape-scale distribution of a threatened forest ungulate. Biological Conservation, 150, 103–110.

    Article  Google Scholar 

  • Stockwell, D., & Peters, D. (1999). The GARP modelling system: Problems and solutions to automated spatial prediction. International Journal of Geographical Information Science, 13, 143–158.

    Article  Google Scholar 

  • The IUCN Red List of Species. 2015, 2016, 2017: Available at: http://www.iucnredlist.org. Accessed Mar 2019.

  • Vanak, A. T., Dickman, C. R., Silva-Rodríguez, E. A., Butler, J. R. A., & Ritchie, E. G. (2014). Top-dogs and under-dogs: Competition between dogs and sympatric carnivores. In M. E. Gompper (Ed.), Free-Ranging Dogs and Wildlife Conservation (pp. 69–93). Oxford University Press.

    Google Scholar 

  • Vanak, A. T., & Gompper, M. E. (2009). Dogs Canis familiaris as carnivores: Their role and function in intraguild competition. Mammal Review, 39, 265–283.

    Article  Google Scholar 

  • Vanak, A. T., Matthew, E., & Gompper, M. E. (2009). Dietary niche separation between sympatric free-ranging domestic dogs and Indian foxes in Central India. Journal of Mammalogy, 90, 1058–1065. https://doi.org/10.1644/09-MAMM-A-107.1

    Article  Google Scholar 

  • Wasserman, T. N., Cushman, S. A., Littell, J. S., Shirk, A. J., & Landguth, E. L. (2013). Population connectivity and genetic diversity of American marten (Martes americana) in the United States northern Rocky Mountains in a climate change context. Conservation Genetics, 14(2), 529–541.

    Article  Google Scholar 

  • Wasserman, T. N., Cushman, S. A., Shirk, A. J., Landguth, E. L., & Little, J. S. (2012). Simulating the effects of climate change on population connectivity of American marten (Martes americana) in the northern Rocky Mountains, USA. Landscape Ecology, 27, 211–225.

    Article  Google Scholar 

  • Weston, M. A., & Stankowich, T. (2014). Dogs as agents of disturbance. In M. E. Gompper (Ed.), Free-Ranging Dogs & Wildlife Conservation (pp. 94–116). Oxford University Press.

    Google Scholar 

  • Wildlife Conservation Society, (2005). Center for international earth science information network - CIESIN - Columbia University 2005. Last of the wild project, version 2, 2005 (LWP-2): Global human footprint dataset (Geographic) Palisades, New York. NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/H4M61H5F,20231018

  • Wong, M. H. G., Li, R. Q., Xu, M., & Long, Y. (2013). An integrative approach to assessing the potential impacts of climate change on the Yunnan snub-nosed monkey. Biological Conservation, 158, 401–409.

    Article  Google Scholar 

  • Young, J. K., Olson, K. A., Reading, R. P., Amgalanbaatar, S., & Berger, J. (2011). Is wildlife going to the dogs? Impacts of feral and free-roaming dogs on wildlife populations. Bioscience, 61, 125–132.

    Article  Google Scholar 

  • Zaniewski, A. E., Lehmann, A., & Overton, J. M. (2002). Predicting species spatial distributions using presence-only data: A case study of native New Zealand ferns. Ecological Modelling, 157, 261–280.

    Article  Google Scholar 

  • Zapata-Rıos, G., & Branch, L. C. (2016). Altered activity patterns and reduced abundance of native mammals in sites with feral dogs in the high Andes. Biological Conservation, 193, 9–16.

    Article  Google Scholar 

  • Zapata-Ríos, G., & Branch, L. C. (2018). Mammalian carnivore occupancy is inversely related to presence of domestic dogs in the high Andes of Ecuador. PLoS One, 13, e0192346.

    Article  Google Scholar 

  • Zeller, K. A., Schroeder, C. A., Wan, H. Y., Collins, G., Denryter, K., Jakes, A. F., & Cushman, S. A. (2021). Forecasting habitat and connectivity for pronghorn across the Great Basin ecoregion. Diversity and Distributions, 27, 2315–2329.

    Article  Google Scholar 

Download references

Acknowledgements

Our gratitude towards the PCCF and Chief wildlife wardens of Himachal Pradesh, Uttarakhand and Jammu and Kashmir for granting permission. We are also thankful to DFO and other forest officials of the region. The authors are grateful to the Director Zoological Survey of India for providing logistic support. Furthermore, we acknowledge the assistance of the project field team during surveys.

Funding

The authors acknowledge the National Mission for Himalayan Studies, Ministry of Environment, Forest, and Climate Change (MoEF&CC), Government of India for the funding support under Grant No. NMHS/2017-18/LG09/ 02 and the Secure Himalaya project, Forest Department of Himachal Pradesh

Author information

Authors and Affiliations

Authors

Contributions

Shahid Ahmad Dar, Amira Sharief, Bheem Dutt Joshi, Lalit Kumar Sharma conceived the idea. Amira Sharief, Vineet Kumar, Hemant Singh, Shahid Ahmad Dar, Vinay Kumar, Amar Paul Singh, Stanzin Dolker, Saurav Bhattacharjee conducted field survey. Shahid Ahmad Dar, Amira Sharief, Bheem Dutt Joshi performed the analysis. Shahid Ahmad Dar, Amira Sharief, Bheem Dutt Joshi, Ritam Dutta, Vineet Kumar, Saurav Bhattacharjee, Stanzin Dolker, Amar Paul Singh, Vinay Kumar worked for the spatial data preparation. Shahid Ahmad Dar, Amira Sharief, Bheem Dutt Joshi, Lalit Kumar Sharma wrote the manuscript. Lalit Kumar Sharma, Bheem Dutt Joshi, Mukesh Thakur edited the manuscript. Lalit Kumar Sharma provided the logistic support and supervised the study.

Corresponding author

Correspondence to Lalit Kumar Sharma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 36284 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dar, S.A., Sharief, A., Kumar, V. et al. Free-ranging dogs are seriously threatening Himalayan environment: delineating the high-risk areas for curbing free-ranging dog infestation in the Trans-Himalayan region. Environ Monit Assess 195, 1386 (2023). https://doi.org/10.1007/s10661-023-11972-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11972-6

Keywords

Navigation