Log in

Assessment of groundwater vulnerability to nitrates using the GIS-based DRASTIC and SI methods: a case study in Zacharo area, Greece

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A vulnerability assessment of the aquifers in the agricultural area of Zacharo in SW, Peloponnese, Greece, was conducted using the DRASTIC index and the susceptibility index (SI). Sensitivity analysis was conducted and thematic maps for each parameter were generated to analyse the impact of individual parameter on the collective groundwater vulnerability. Results derived from the DRASTIC and SI maps revealed that the extremely highly vulnerable zones are concentrated at three coastal sites in the western part of the study area. Data from these maps also indicate low vulnerability areas throughout the eastern part of the region. The distribution of nitrate concentrations in groundwater is better correlated with the DRASTIC (79.2%) compared to SI (60.2%). Neither method takes into consideration the impact of dilution and nitrate to ammonium reduction, on the nitrate content of groundwater, thus overestimating the vulnerability index. Moreover, the SI method overestimates the impact of olive groves’ land use type on the susceptibility index, thus resulting to a lower correlation with the observed nitrate concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Code availability

Not applicable.

Data availability

The data that support this study are available from the first author upon request.

References

  • Akenji, V. N., Ako, A., Akoachere, R. A., & Takahiro, H. (2015). DRASTIC-GIS model for assessing vulnerability to pollution of the phreatic aquiferous formations in Douala-Cameroon. Journal of African Earth Sciences, 102, 180–190.

    Article  Google Scholar 

  • Aller, L., Bennet, T., Lehr, J. H., Petty, R. J., & Hackett, G. (1987). DRASTIC: A standardized system for evaluating ground water pollution potential using hydrogeologic settings. US EPA Report 600/287/035, U.S. Environmental Protection Agency.

  • Alrawabdeh, A. M., Alansari, N. A., Altaani, A. A., & Knutsson, S. (2013). A GIS-based drastic model for assessing aquifer vulnerability in Amman-Zerqa Groundwater Basin, Jordan. Journal of Clinical Oncology Official Journal of the American Society of Clinical Oncology, 5(5), 490–504.

    Google Scholar 

  • Antonakos, A. K., & Lambrakis, N. J. (2007). Development and testing of three hybrid methods for the assessment of aquifer vulnerability to nitrates, based on the drastic model, an example from NE Korinthia. Greece. Journal of Hydrology, 333(2–4), 288–304.

    Article  Google Scholar 

  • Assaf, H., & Saadeh, M. (2009). Geostatistical assessment of groundwater nitrate contamination with reflection on DRASTIC vulnerability assessment: The case of the Upper Litani Basin. Lebanon. Water Resources Management, 23(4), 775–796.

    Article  Google Scholar 

  • Bartzas, G., Tinivella, F., Medini, L., Zaharaki, D., & Komnitsas, K. (2015). Assessment of groundwater contamination risk in an agricultural area in north Italy. Information Processing in Agriculture, 2, 109–129.

    Article  Google Scholar 

  • Barzegar, R., Moghaddam, A. A., Adamowski, J., & Nazemi, A. H. (2019). Delimitation of groundwater zones under contamination risk using a bagged ensemble of optimized DRASTIC frameworks. Environmental Science Pollution Research, 1–15. https://doi.org/10.1007/s11356-019-04252-9

  • Berhe Zenebe, G., Hussien, A., Girmay, A., & Hailu, G. (2020). Spatial analysis of groundwater vulnerability to contamination and human activity impact using a modified DRASTIC model in Elalla-Aynalem Catchment. Northern Ethiopia. Sustainable Water Resources Management, 6(3), 51.

    Article  Google Scholar 

  • Bekesi, G., & McConchie, J. (2002). The use of aquifer-media characteristics to model vulnerability to contamination, Manawaturegion, NewZealand. Hydrogeology Journal, 10(2), 322-331.

  • Bouyoucos, G. J. (1927). The hydrometer as a new method for the mechanical analysis of soils. Soil Science, 23, 343–353.

    Article  CAS  Google Scholar 

  • Civita, M., & Maio, M. (2000). SINTACS R5, A new parametric system for the assessment and automating map** of groundwater vulnerability to contamination. Pitagora Editor (Bologna).

  • CLC. (2018). Corine Land Cover (CLC) Greece. Retrieved January 24, 2019, fromhttps://land.copernicus.eu/pan-european/corine-land-cover/clc2018

  • Doerfliger, N., Jeannin, P. Y., & Zwahlen, F. (1999). Water vulnerability assessment in karst environments: A new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environmental Geology, 39, 165–176.

    Article  CAS  Google Scholar 

  • Entezari, M., Yamani, M., & Aghdam, M. J. (2016). Evaluation of intrinsic vulnerability, hazard and risk map** for karst aquifers, Khorein aquifer, Kermanshah province: A case study. Environmental Earth Sciences, 75(5), 435.

    Article  Google Scholar 

  • Evans, B. M., & Myers, W. L. (1990). A GIS-based approach to evaluating regional groundwater pollution potential with DRASTIC. Journal of Soil and Water Conservation, 45, 242–250.

    Google Scholar 

  • Foster, S. (1987). Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In W. Van Duijvenbooden & H. G. Van Waegeningh (Eds.), Vulnerability of soil and groundwater to pollutants (pp. 69–86). Committee on Hydrological Research.

    Google Scholar 

  • Ghazavi, R., & Ebrahimi, Z. (2015). Assessing groundwater vulnerability to contamination in an arid environment using DRASTIC and GOD models. International Journal of Environmental Science and Technology, 12, 2909–2918. https://doi.org/10.1007/s13762-015-0813-2

    Article  CAS  Google Scholar 

  • Gogu, R., & Dassargues, A. (2000). Current trend and future challenges in groundwater vulnerability assessment using overlay and index methods. Environmental Geology, 39(6), 549–559.

    Article  CAS  Google Scholar 

  • Huan, H., Wang, J., & Teng, Y. (2012). Assessment and validation of groundwater vulnerability to nitrate based on a modified DRASTIC model: A case study in Jilin City of northeast China. Science of the Total Environment, 440, 14–23.

    Article  CAS  Google Scholar 

  • Kallergis, G., & Lambrakis, N. (1992). Contribution á l’etude des sources thermominérales de Kaifa. Hydrologie, 3, 127–136.

    Google Scholar 

  • Kazakis, N., & Oikonomidis, D. (2015). Groundwater vulnerability and pollution risk assessment with disparate models in karstic, porous and fissured rock aquifers using remote sensing techniques and GIS in Anthemountas basin Greece. Environmental Earth Sciences, 74https://doi.org/10.1007/s12665-015-4641-y

  • Lodwick, W. A., Monson, W., & Svoboda, L. (1990). Attribute error and sensitivity analysis of map operations in geographical information systems: Suitability analysis. International Journal of Geographical Information Systems, 4(4), 413–428.

    Article  Google Scholar 

  • Mohamed, H. H., Ayed, A., Francés, A., & Ramiro, R. (2007). Validité de l’application des méthodes de vulnérabilité DRASTIC, SINTACS et SI à l’étude de la pollution par les nitrates dans la nappe phréatique de Metline-Ras Jebel-Raf Raf (Nord-Est Tunisien). C. r. Géosci., 339, 493–505.

    Article  Google Scholar 

  • Napolitano, P., & Fabbri, A. G. (1996). Single-parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS. In: Proceedings of the Vienna Conference on HydroGIS 96: Application of Geographic Information Systems in Hydrology and Water Resources Management. IAHS Pub, 235, 559–566.

  • Panagopoulos, G. P., Antonakos, A. K., & Lambrakis, N. J. (2006). Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical method and GIS. Hydrogeology Journal, 14(6), 894–911.

    Article  CAS  Google Scholar 

  • Panagopoulos, G., & Lambrakis, N. (1999). Hydrogeological conditions in the lower part of river Nedas catchment area. Proc. of the 5th Panhellenic Hydrogeological Congress (pp. 231–243). Nicosia, Cyprus, 12–14 November.

  • Rajput, H., Goyal, R., & Brighu, U. (2020). Modification and optimization of DRASTIC model for groundwater vulnerability and contamination risk assessment for Bhiwadi region of Rajasthan, India. Environmental Earth Sciences79(6). https://doi.org/10.1007/s12665-020-8874-z

  • Ribeiro, L. (2000). Um novo indice de vulnerabilidade especifico de aquiferos. Formulações e aplicações. [SI: a new index of aquifer susceptibility to agricultural pollution]. Internal report, ERSHA/CVRM, Instituto Superior Tecnico Lisbon (p. 12). Portugal.

  • Rosen, L. (1994). A study of the DRASTIC methodology with emphasis on Swedish conditions. Groundwater, 32(2), 278–285.

    Article  Google Scholar 

  • Rupert, M. G. (1999). Improvements to the DRASTIC groundwater vulnerability map** method. U.S. Geological Survey Fact Sheet FS-066–99, USGS, Reston, VA.

  • Saidi, S., Bouri, S., Dhia, H. B., & Anselme, B. (2011). Assessment of groundwater risk using intrinsic vulnerability and hazard map**: Application to Souissi aquifer Tunis. Sahel. Agricultural Water Management, 98, 1671–1682.

    Article  Google Scholar 

  • Shrestha, S., Kafle, R., & Pandey, V. (2017). Evaluation of index-overlay methods for groundwater vulnerability and risk assessment in Kathmandu Valley Nepal. Science of the Total Environment, 575, 779–790. https://doi.org/10.1016/j.scitotenv.2016.09.141

    Article  CAS  Google Scholar 

  • Singha, S. S., Pasupuleti, S., Singha, S., Singh, R., & Venkatesh, A. S. (2019). A GIS-based modified DRASTIC approach for geospatial modeling of groundwater vulnerability and pollution risk map** in Korba district Central India. Environmental Earth Sciences, 78, 628.

    Article  Google Scholar 

  • Sun, L., Liang, X., **, M., Ma, B., Zhang, X., & Song, C. (2021). Ammonium and nitrate sources and transformation mechanism in the Quaternary sediments of Jianghan Plain China. Science of the Total Environment, 774, 145131.

  • Stigter, T. Y., Riberio, L., & Dill, A. M. M. C. (2006). Evaluation of an intrinsic and a specific vulnerability assessment method in comparison with groundwater salinisation and nitrate contamination levels in two agricultural regions in the south of Portugal. Hydrogeology Journal, 14, 79–99.

    Article  CAS  Google Scholar 

  • Thornthwaite, C. W., & Mather, J. R. (1955). The water balance. Publications in Climatology 8(1).

  • Tomer, T., Katyal, D., & Joshi, V. (2019). Sensitivity analysis of groundwater vulnerability using DRASTIC method: A case study of National Capital Territory, Delhi India. Groundwater for Sustainable Development, 9, 100271.

  • United States Environmental Protection Agency. (1985). DRASTIC: A standard system for evaluating groundwater potential using hydrogeological settings. Ada, Oklahoma, USA.

  • U.S. Soil Conservation Service. (1972). National Engineering Handbook, Section 4, Hydrology. Washington, DC, USA.

  • U.S. Soil Conservation Service. (1986). Urban Hydrology for Small Watersheds, TR-55 (2nd ed.). DC, USA.

    Google Scholar 

  • Van Stempvoort, D., Ewert, L., & Wassenaar, L. (1993). Aquifer vulnerability index (AVI): A GIS compatible method for groundwater vulnerability map**. Canadian Water Resources Journal, 18, 25–37. https://doi.org/10.4296/cwrj1801025

    Article  Google Scholar 

  • Vrba, J., & Zaporozec, A. (1994). Guidebook on Map** Groundwater Vulnerability—IAH International Contributions to Hydrogeology, 16 (p. 131). Heise Publication, Hannover.

    Google Scholar 

  • WHO. (1996). Guidelines for drinking-water quality (Vol. 2). Health Criteria and Other Supporting Information.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation and submission of this manuscript.

Corresponding author

Correspondence to Konstantina N. Katsanou.

Ethics declarations

Ethics approval

Not applicable. This research does not involve human participants and welfare of animals.

Consent to participate

All authors consent to participate in the preparation of this manuscript.

Consent for publication

All authors agreed to publish the current manuscript in this journal.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panagopoulos, G.P., Katsanou, K.N. & Barouchas, P.E. Assessment of groundwater vulnerability to nitrates using the GIS-based DRASTIC and SI methods: a case study in Zacharo area, Greece. Environ Monit Assess 195, 286 (2023). https://doi.org/10.1007/s10661-022-10882-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10882-3

Keywords

Navigation