Log in

Arsenic and fluorine in groundwater in northern Mexico: spatial distribution and enrichment factors

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

North-central Mexico has groundwater contaminated with arsenic (As) and fluoride (F). Based on the dispersion patterns of these solutes, their sources are linked to felsic volcanic rock fragments and secondary minerals (clays, iron oxyhydroxides) within the alluvium fill of the aquifers. However, little is known about the effect of the enrichment factors for F and As in this area. Natural enrichment factors include evaporation, Ca/Na, and competitive adsorption and desorption from solid phases. This study used 1237 groundwater quality data measurements from 305 sampling sites collected between 2012 and 2019 in the state of Durango in north-central Mexico. To determine the contribution of enrichment factors to As and F content, the study area was divided into four sections, two being in the mountainous part of the state and two in the high plateaus. The data were compared among sections and analyzed using Spearman correlation and Piper and Block diagrams. The results indicate that the main solute enrichment mechanisms are evaporation and weathering of silicates and evaporites. Among the four sections, As, pH, and HCO3 seemed not to vary, F varied slightly, and nitrate and total dissolved solids varied the most. The lack of variation in As among sections is associated to its strong adsorption to clay minerals and iron oxyhydroxides, whereas the diminished F content in the eastern sections is likely linked to the adsorption of F to precipitating calcite (since groundwater is saturated with respect to calcite (SIcalcite = 0.43) and undersaturated for fluorite (SIfluorite =  − 1.16). These processes shed light on the distribution of F and As in this area, and are likely operating in other states in northern Mexico and in semi-arid areas elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data used for the determination of water quality in the study area is publicly available at http://sina.conagua.gob.mx/sina/index.php.

References

  • Alarcón-Herrera, M. T., Martin-Alarcon, D. A., Gutiérrez, M., Reynoso-Cuevas, L., Martín-Domínguez, A., Olmos-Márquez, M. A., & Bundschuh, J. (2020). Co-occurrence, possible origin, and health-risk assessment of arsenic and fluoride in drinking water sources in Mexico: Geographical data visualization. Science of the Total Environment, 698, 134168. https://doi.org/10.1016/j.scitotenv.2019.134168

    Article  CAS  Google Scholar 

  • Alarcón-Herrera, M. T., & Gutiérrez, M. (2022). Geogenic arsenic: Challenges, gaps, and future directions. Current Opinion on Environmental Science and Health, 100349. https://doi.org/10.1016/j.coesh.2022.100349

  • Bianchini, G., Brombin, V., Marchina, C., Natali, C., Godebo, T. R., Rasini, A., & Salani, G. M. (2020). Origin of fluoride and arsenic in the Main Ethiopian Rift waters. Minerals, 10, 453. https://doi.org/10.3390/min10050453

    Article  CAS  Google Scholar 

  • Chandrajith, R., Diyabalanage, S., & Dissanayake, C. B. (2020). Geogenic fluoride and arsenic of Sri Lanka and its implications to community health. Groundwater for Sustainable Development, 10, 100359. https://doi.org/10.1016/j.gsd.2020.100359

    Article  Google Scholar 

  • Cinti, D., Vaselli, O., Poncia, P. P., Brusca, L., Grassa, F., Procesi, M., & Tassi, F. (2019). Anomalous concentrations of arsenic, fluoride and radón in volcanic sedimentary aquifers from central Italy: Quality indexes for management of the water resource. Environmental Pollution, 253, 525–537. https://doi.org/10.1016/j.envpol.2019.07.063

    Article  CAS  Google Scholar 

  • CONAGUA. (2009). Programa Hídrico Visión 2030 del Estado de Durango, Comisión Nacional del Agua, México. Primera edición, Mexico D.F., pp. 218. ISBN 978–968–817–911–6.

  • Deng, L., Liu, Y., Huang, T., & Sun, T. (2016). Fluoride removal by induced crystallization using fluorapatite/calcite seed crystals. Chemical Engineering Journal, 287, 83–91. https://doi.org/10.1016/j.cej.2015.11.011

    Article  CAS  Google Scholar 

  • Feng, S., Guo, H., Sun, X., Han, S., & Ying, L. (2022). Relative importance of hydrogeochemical and hydrogeological processes on arsenic enrichment in groundwater of the Yinchuan Basin, China. Applied Geochemistry, 137, 105180. https://doi.org/10.1016/j.apgeochem.2021.105180

    Article  CAS  Google Scholar 

  • Fernández-Macías, J. C., Ochoa-Martínez, A. C., Orta-García, S. T., Varela-Silva, J. A., & Pérez-Maldonado, I. N. (2020). Probabilistic human health risk assessment associated with fluoride and arsenic co-occurrence in drinking water from the metropolitan area of San Luis Potosí, Mexico. Environmental Monitoring and Assessment, 192, 712. https://doi.org/10.1007/s10661-020-08675-7

    Article  CAS  Google Scholar 

  • Ferrari, L., Valencia-Moreno, M., & Bryan, S. (2007). Magmatism and tectonics of the Sierra Madre Occidental and its relation with the evolution of the western margin of North America. In S. A. Alaniz-Álvarez, & A. F. Nieto-Samaniego (Eds.), Geology of México: Celebrating the Centenary of the Geological Society of México (p. 1–39). Geological Society of America Special Paper 422. https://doi.org/10.1130/2007.2422(01)

  • Frost, J. (2019). Regression analysis: An intuitive guide for using and interpreting linear models. Statistics by Jim Publishing, State College Pennsylvania, U.S.A. ISBN 978–1735431185

  • Gaillardet, J., Dupré, B., Louvat, P., & Allègre, C. J. (1999). Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159, 3–30. https://doi.org/10.1016/S0009-2541(99)00031-5

    Article  CAS  Google Scholar 

  • García, M. G., Borgnino, L., Bia, G., & Depetris, P. J. (2014). Mechanisms of arsenic and fluoride reléase from Chacopampean sediments (Argentina). International Journal of Environment and Health, 7(1), 41–57. https://doi.org/10.1504/IJENVH.2014.060122

    Article  Google Scholar 

  • González-Horta, C., Ballinas-Casarrubias, L., Sánchez-Ramírez, B., Ishida, M. C., Barrera-Hernández, A., Gutiérrez-Torres, D., Zacarías, O. L., Saunders, R. J., Drobná, Z., Méndez, M. A., García-Vargas, G., Loomis, D., Styblo, M., & DelRazo, L. M. (2015). A concurrent exposure to arsenic and fluoride from drinking water in Chihuahua, Mexico. International Journal of Environmental Research and Public Health, 12, 4587–4601. https://doi.org/10.3390/ijerp120504587

    Article  Google Scholar 

  • González-Partida, E., Camprubí, A., Carrillo-Chavez, A., Díaz-Carreño, E. H., González-Ruiz, L. E., Farfán-Panamá, J. L., Cienfuegos-Alvarado, E., Morales-Puente, P., & Vázquez-Ramirez, J. T. (2019). Giant fluorite mineralization in central Mexico by means of exceptionally low salinity fluids: An unusual style among MVT deposits. Minerals, 9, 35. https://doi.org/10.3390/min9010035

    Article  CAS  Google Scholar 

  • Gutiérrez, M., Espino-Valdés, M. S., Alarcón-Herrera, M. T., Pinales-Munguía, A., & Silva-Hidalgo, H. (2021a). Arsénico y flúor en agua subterránea de Chihuahua: origen, enriquecimiento y tratamientos posibles. Tecnociencia Chihuahua, 15(2), 95–108. https://doi.org/10.54167/tecnociencia.v15i2.828

    Article  Google Scholar 

  • Gutiérrez, M., Calleros-Rincón, E. Y., Espino-Valdés, M. S., & Alarcón-Herrera, M. T. (2021b). Role of nitrogen in assessing the sustainability of irrigated areas: Case study of northern Mexico. Water Air and Soil Pollution, 232, 148. https://doi.org/10.1007/s11270-021-05091-6

    Article  CAS  Google Scholar 

  • He, X., Li, P., Ji, Y., Wang, Y., Su, Z., & Elumalai, V. (2020). Groundwater arsenic and fluoride and associated arsenicosis and fluorosis in China: Occurrence, distribution and management. Exposure and Health, 12, 355–368. https://doi.org/10.1007/s12403-020-00347-8

    Article  CAS  Google Scholar 

  • Jiménez-Córdova, M. I., Sánchez-Peña, L. C., Barrera-Hernández, A., González-Horta, C., Barbier, O., & Del Razo, L. M. (2019). Fluoride exposure is associated with altered metabolism of arsenic in an adult Mexican population. Science of the Total Environment, 684, 621–628. https://doi.org/10.1016/j.scitotenv.2019.05.356

    Article  CAS  Google Scholar 

  • Kumar, M., Goswami, R., Patel, A. K., Srivastava, M., & Das, N. (2020). Scenario, perspectives, and mechanism of arsenic and fluoride co-occurrence in the groundwater: A review. Chemosphere, 249, 126126. https://doi.org/10.1016/j.chemosphere.2020.126126

    Article  CAS  Google Scholar 

  • McMahon, P. B., Brown, C. J., Johnson, T. D., Belitz, K., & Lindsey, B. D. (2020). Fluoride occurrence in United States groundwater. Science of the Total Environment, 732, 139217. https://doi.org/10.1016/j.scitotenv.2020.139217

    Article  CAS  Google Scholar 

  • Navarro, O., Gonzalez, J., Júnez-Ferreira, H. E., Bautista, C.-F., & Cardona, A. (2017). Correlation of arsenic and fluoride in the groundwater for human consumption in a semiarid region of Mexico. Procedia Engineering, 186, 333–340. https://doi.org/10.1016/j.proeng.2017.03.259

    Article  CAS  Google Scholar 

  • Nordstrom, D. K. (2022). Fluoride in thermal and non-thermal groundwater: Insights from geochemical modeling. Science of the Total Environment, 824, 153606. https://doi.org/10.1016/j.scitotenv.2022.153606

    Article  CAS  Google Scholar 

  • Ortega-Guerrero, M. A. (2009). Presencia, distribución, hidrogeoquimica y origen de arsénico, fluoruro y otros elementos traza disueltos en agua subterránea, a escala de cuenca hidrológica tributaria de Lerma-Chapala, Mexico. Revista Mexicana De Ciencias Geológicas, 26, 143–161.

    Google Scholar 

  • Ortiz-Letechipia, J., González-Trinidad, J., Júnez-Ferreira, H. E., Bautista-Capetillo, C., Robles-Rovelo, C. O., Contreras Rodríguez, A. R., & Dávila-Hernández, S. (2022). Aqueous arsenic speciation with hydrogeochemical modeling and correlation with fluorine in groundwater in a semiarid region of Mexico. Water, 14, 519. https://doi.org/10.3390/w14040519

    Article  CAS  Google Scholar 

  • Podgorsky, J., & Berg, M. (2022). Global análisis and prediction of fluoride in groundwater. Nature Communications, 13, 4232. https://doi.org/10.1038/s41467-022-31940-x

    Article  CAS  Google Scholar 

  • Puccia, V., Limbozi, F., & Avena, M. (2018). On the mechanism controlling fluoride concentration in groundwaters of the south of the Province of Buenos Aires, Argentina: Adsorption or solubility? Environmental Earth Sciences, 77, 495. https://doi.org/10.1007/s12665-018-7678-x

    Article  CAS  Google Scholar 

  • Rathore, V. K., Dohare, K. D., & Mondal, P. (2016). Competitive adsorption between arsenic and fluoride from binary mixture on chemically treated laterite. Journal of Environmental Chemical Engineering, 4, 2417–2430. https://doi.org/10.1016/j.jece.2016.04.017

    Article  CAS  Google Scholar 

  • Ren, M., Rodríguez-Pineda, J. A., & Goodell, P. (2022). Arsenic mineral in volcanic tuff, a source of arsenic anomaly in groundwater: City of Chihuahua, Mexico. Geosciences, 12, 69. https://doi.org/10.3390/geosciences12020069

    Article  CAS  Google Scholar 

  • Reyes-Gómez, V. M., Alarcón-Herrera, M. T., Gutiérrez, M., & Núñez López, D. (2013). Fluoride and arsenic in an alluvial aquifer system in Chihuahua, Mexico: Contaminant levels, potential sources, and co-occurrence. Water Air and Soil Pollution, 224(2), 1433. https://doi.org/10.1007/s11270-013-1433-4

    Article  CAS  Google Scholar 

  • Rosenberg, P. E. (1988). Aluminum fluoride hydrates: Volcanogenic salts from Mount Erebus, Antarctica. American Mineralogist, 73(7–8), 855–860.

    CAS  Google Scholar 

  • Scanlon, B. R., Nicot, J. P., Reedy, R. C., Kurtzman, D., Mukherjee, A., & Nordstrom, D. K. (2009). Elevated naturally occurring arsenic in a semiarid oxidizing system, Southern High Plains aquifer, Texas, USA. Applied Geochemistry, 24, 2061–2071. https://doi.org/10.1016/j.apgeochem.2009.08.004

    Article  CAS  Google Scholar 

  • Su, H., Kang, W., Kang, N., Liu, J., & Li, Z. (2021). Hydrogeochemistry and health hazards of fluoride-enriched groundwater in the Tarim Basin, China. Environmental Research, 200, 111476. https://doi.org/10.1016/j.envres.2021.111476

    Article  CAS  Google Scholar 

  • Turner, B. D., Binning, P., & Stipp, S. L. S. (2005). Fluoride removal by calcite: Evidence for fluorite precipitation and surface adsorption. Environmental Science and Technology, 39, 9561–9568. https://doi.org/10.1021/es0505090

    Article  CAS  Google Scholar 

  • Vital, M., Martinez, D. E., Babay, P., Quiroga, S., Clement, A., & Daval, D. (2019). Control of the mobilization of arsenic and other natural pollutants in groundwater by calcium carbonate concretions in the Pampean Aquifer, southeast of the Buenos Aires province, Argentina. Science of the Total Environment, 396(674), 532–543. https://doi.org/10.1016/j.scitotenv.2019.04.151

    Article  CAS  Google Scholar 

  • Wallace, A. R. (2010). Fluorine, Fluorite and Fluorspar in Central Colorado. U.S. Geological Survey Scientific Investigations Report 2010–5113, 61 p.

  • Zulueta-Lacson, C. F., Lu, M. C., & Huang, Y. H. (2022). Calcium-based seeded precipitation for simultaneous removal of fluoride and phosphate: Its optimization using BBD-RSM and defluoridation mechanism. Journal of Water Process Engineering, 47, 102658. https://doi.org/10.1016/j.jwpe.2022.102658

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Keran Nkongolo for his help in drafting the maps.

Author information

Authors and Affiliations

Authors

Contributions

Mélida Gutiérrez and Teresa Alarcón-Herrera designed the study and prepared the draft; Mélida Gutiérrez elaborated the diagrams and tables. Patricia Gaytán-Alarcón drafted the section of methods and ran the statistical analyses; all authors interpreted the results and drafted the discussions. All authors reviewed the manuscript.

Corresponding author

Correspondence to M. Gutiérrez.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez, M., Alarcón-Herrera, M.T. & Gaytán-Alarcón, A.P. Arsenic and fluorine in groundwater in northern Mexico: spatial distribution and enrichment factors. Environ Monit Assess 195, 212 (2023). https://doi.org/10.1007/s10661-022-10818-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10818-x

Keywords

Navigation