Log in

Crop classification by using dual-pol SAR vegetation indices derived from Sentinel-1 SAR-C data

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In the following study, an attempt is made for crop classification of rainy season through analyzing time-series Sentinel-1 SAR data of May 2020 to September 2020. The SVIDP index derived from dual-pol (VV and VH) bands consisting of NRPB (\({\sigma }^{0}{vh}_{ij}- {\sigma }^{0}{vv}_{ij}/{\sigma }^{0}{vh}_{ij}+ {\sigma }^{0}{vv}_{ij}\)), DPDD \({(\sigma }^{0}{vh}_{ij}+ {\sigma }^{0}{vv}_{ij})/ \surd 2\)), IDPDD (\({\sigma}^{0}{vv}_{(max)}- {\sigma }^{0}{vv}_{ij})+{\sigma }^{0}{vh}_{ij}/ \surd 2\)), and VDDPI \(({\sigma }^{0}{vh}_{ij}+{\sigma }^{0}{vv}_{ij}/ {\sigma }^{0}{vv}_{ij})\) ratios are utilized for discriminating inter-vegetative boundaries of crop pixels. This study was conducted near Karnal city region, Karnal district, Haryana, India. The Sentinel-1 data has the capability to penetrate thick cloud cover and provide high revisit frequency data for rain-fed crops. Obtained classification achieved higher accuracy in both RF (93.77%) and SVM (93.50%) classifiers. Obtained linear regression statistics of mean raster imagery reveals that IDPDD index is much sensitive to other crop which has highest standard deviations in σvh° and σvv° bands throughout the period, and high R2 with σvh° (0.70), VV (0.58), NRPB (0.693), and DPDD (0.697) indices. In contrast to this, IDPDD index has least correlation (< 0.289) with σvh°, σvv°, EVI 2, NRPB, and DPDD indices for water body which has smooth surface and lowest SAR backscattering with minimum standard deviations in the same period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Graph 1
Graph 2
Fig. 5
Graph 3
Graph 4

Similar content being viewed by others

References

  • Ackermann, N. (2014). Growing Stock Volume Estimation in Temperate Forested Areas Using a Fusion Approach with SAR Satellites Imagery. Springer.

    Google Scholar 

  • Ali, I., Cao, S., Naeimi, V., Paulik, C., & Wagner, W. (2018). Methods to remove the border noise from Sentinel-1 synthetic aperture radar data: Implications and importance for time-series analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(3), 777–786.

    Article  Google Scholar 

  • Arias Cuenca, M., Campo-Bescós, M., & Álvarez-Mozos, J. (2020). Crop classification based on temporal signatures of Sentinel-1 observations over Navarre province, Spain. Remote Sensing, 12(2), 278.

    Article  Google Scholar 

  • Bargiel, D. (2017). A new method for crop classification combining time series of radar images and crop phenology information. Remote Sensing of Environment, 198, 369–383.

    Article  Google Scholar 

  • Boken, S. L., Staples, C. R., Sollenberger, L. E., Jenkins, T. C., & Thatcher, W. W. (2005). Effect of grazing and fat supplementation on production and reproduction of Holstein cows. Journal of Dairy Science, 88(12), 4258–4272.

    Article  CAS  Google Scholar 

  • Bousbih, S., Zribi, M., Lili-Chabaane, Z., Baghdadi, N., El Hajj, M., Gao, Q., & Mougenot, B. (2017). Potential of Sentinel-1 radar data for the assessment of soil and cereal cover parameters. Sensors, 17(11), 2617.

    Article  Google Scholar 

  • Zhang, R., Sathishkumar, V. E., & Samuel, R. D. (2020). Fuzzy efficient energy smart home management system for renewable energy resources. Sustainability, 12(8), 3115. https://doi.org/10.3390/su12083115

    Article  Google Scholar 

  • Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123–140.

  • Choudhury, B. J., & Tucker, C. J. (1987). Monitoring global vegetation using Nimbus-7 37 GHz Data Some empirical relations. International Journal of Remote Sensing, 8(7), 1085–1090.

    Article  Google Scholar 

  • Colwell, J. E. (1974). Vegetation canopy reflectance. Remote Sensing of Environment, 3(3), 175–183.

    Article  Google Scholar 

  • Das, K., & Paul, P. K. (2015). Present status of soil moisture estimation by microwave remote sensing. Cogent Geoscience, 1(1), 1084669.

    Article  Google Scholar 

  • Dash, J., & Curran, P. J. (2004). The MERIS terrestrial chlorophyll index. International Journal of Remote Sensing, 25, 5403–5413.

    Article  Google Scholar 

  • Dobson, M. C., Ulaby, F. T., Hallikainen, M. T., & El-Rayes, M. A. (1985). Microwave dielectric behavior of wet soil-Part II: Dielectric mixing models. IEEE Transactions on Geoscience and Remote Sensing, 1, 35–46.

    Article  Google Scholar 

  • Dubois, P. C., Van Zyl, J., & Engman, T. (1995). Measuring soil moisture with imaging radars. IEEE Transactions on Geoscience and Remote Sensing, 33(4), 915–926.

    Article  Google Scholar 

  • Engman, E. T., & Chauhan, N. (1995). Status of microwave soil moisture measurements with remote sensing. Remote Sensing of Environment, 51(1), 189–198.

    Article  Google Scholar 

  • Weissel, J. K., Czuchlewski, K. R., & Kim, Y. (2004). Synthetic aperture radar (SAR)-based map** of volcanic flows: Manam Island, Papua New Guinea. Natural Hazards and Earth System Sciences, 4(2), 339–346.

    Article  Google Scholar 

  • Filipponi, F. (2019). Sentinel-1 GRD preprocessing workflow. Multidisciplinary Digital Publishing Institute Proceedings, 18(1), 11.

    Google Scholar 

  • Filgueiras, R., Mantovani, E. C., Althoff, D., Fernandes Filho, E. I., & Cunha, F. F. D. (2019). Crop NDVI monitoring based on sentinel 1. Remote Sensing, 11(12), 1–21.

  • Freeman, A. (1993). Radiometric calibration of SAR image data. International Archives of Photogrammetry and Remote Sensing, 29, 212–212.

    Google Scholar 

  • Huang, C., Davis, L. S., & Townshend, J. R. G. (2002). An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23(4), 725–749.

    Article  Google Scholar 

  • Jackson, T. J., Le Vine, D. M., Hsu, A. Y., Oldak, A., Starks, P. J., Swift, C. T., & Haken, M. (1999). Soil moisture map** at regional scales using microwave radiometry: The Southern Great Plains Hydrology Experiment. IEEE Transactions on Geoscience and Remote Sensing, 37(5), 2136–2151.

    Article  Google Scholar 

  • Karjalainen, M., Kaartinen, H., & Hyyppä, J. (2008). Agricultural monitoring using Envisat alternating polarization SAR images. Photogrammetric Engineering & Remote Sensing, 74(1), 117–126.

    Article  Google Scholar 

  • Kussul, N., Lemoine, G., Gallego, F. J., Skakun, S. V., Lavreniuk, M., & Shelestov, A. Y. (2016). Parcel-based crop classification in ukraine using landsat-8 data and sentinel-1A data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(6), 2500–2508.

    Article  Google Scholar 

  • Lee, J. S., Jurkevich, L., Dewaele, P., Wambacq, P., & Oosterlinck, A. (1994). Speckle filtering of synthetic aperture radar images: A review. Remote Sensing Reviews, 8(4), 313–340.

    Article  Google Scholar 

  • Leprieur, C., Verstraete, M. M., & Pinty, B. (1994). Evaluation of the performance of various vegetation indices to retrieve vegetation cover from AVHRR data. Remote Sensing Reviews, 10(4), 265–284.

    Article  Google Scholar 

  • Mandal, D., Kumar, V., Bhattacharya, A., Rao, Y. S., Siqueira, P., & Bera, S. (2018). Sen4Rice: A processing chain for differentiating early and late transplanted rice using time-series Sentinel-1 SAR data with Google Earth engine. IEEE Geoscience and Remote Sensing Letters, 15(12), 1947–1951.

    Article  Google Scholar 

  • Mandal, D., Kumar, V., Ratha, D., Dey, S., Bhattacharya, A., Lopez-Sanchez, J. M., & Rao, Y. S. (2020). Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data. Remote Sensing of Environment, 247, 111954.

    Article  Google Scholar 

  • McNairn, H., & Shang, J. (2016). A review of multitemporal synthetic aperture radar (SAR) for crop monitoring. Multitemporal Remote Sensing (pp. 317–340). Cham: Springer.

    Chapter  Google Scholar 

  • Narvekar, P. S., Entekhabi, D., Kim, S. B., & Njoku, E. G. (2015). Soil moisture retrieval using L-band radar observations. IEEE Transactions on Geoscience and Remote Sensing, 53(6), 3492–3506.

    Article  Google Scholar 

  • Nguyen, D. B., Gruber, A., & Wagner, W. (2016). Map** rice extent and crop** scheme in the Mekong Delta using Sentinel-1A data. Remote Sensing Letters, 7(12), 1209–1218.

    Article  Google Scholar 

  • Orjuela, K. G., Gaona-García, P. A., & Marin, C. E. (2020). Towards an agriculture solution for product supply chain using blockchain: Case study Agro-chain with BigchainDB. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science, 71(1), 1–16. https://doi.org/10.1080/09064710.2020.1840618

    Article  Google Scholar 

  • Paloscia, S., & Pampaloni, P. (1988). Microwave polarization index for monitoring vegetation growth. IEEE Transactions on Geoscience and Remote Sensing, 26(5), 617–621.

    Article  Google Scholar 

  • Park, J. W., Korosov, A., & Babiker, M. (2017). Efficient thermal noise removal of Sentinel-1 image and its impacts on sea ice applications (p. 12613). EGUGA.

    Google Scholar 

  • Periasamy, S. (2018). Significance of dual polarimetric synthetic aperture radar in biomass retrieval: An attempt on Sentinel-1. Remote Sensing of Environment, 217, 537–549.

    Article  Google Scholar 

  • Rao, S. S., Das, S. N., Nagaraju, M. S. S., Venugopal, M. V., Rajankar, P., Laghate, P., & Sharma, J. R. (2013). Modified Dubois model for estimating soil moisture with dual polarized SAR data. Journal of the Indian Society of Remote Sensing, 41(4), 865–872.

    Article  Google Scholar 

  • Santoso, A. W., Bayuaji, L., Pebrianti, D., Awang, S., Sze, L. T., Lateh, H., & Zain, J. M. (2016). A fuzzy approach for speckle noise reduction in SAR images. International Journal of Advanced and Applied Sciences, 3(5), 33–38.

    Google Scholar 

  • Schmidt, K., Schwerdt, M., Miranda, N., & Reimann, J. (2020). Radiometric comparison within the Sentinel-1 SAR constellation over a wide backscatter range. Remote Sensing, 12(5), 854.

    Article  Google Scholar 

  • Sellers, P. J. (1985). Canopy reflectance, photosynthesis and transpiration. International Journal of Remote Sensing, 6(8), 1335–1372.

    Article  Google Scholar 

  • Song, K., Zhou, X., & Fan, Y. (2010). Retrieval of soil moisture content from microwave backscattering using a modified IEM model. Progress in Electromagnetics Research, 26, 383–399.

    Article  Google Scholar 

  • Whelen, T., & Siqueira, P. (2018). Time-series classification of Sentinel-1 agricultural data over North Dakota. Remote Sensing Letters, 9(5), 411–420.

    Article  Google Scholar 

  • Topp, G. C., Davis, J. L., & Annan, A. P. (1980). Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resources Research, 16(3), 574–582.

    Article  Google Scholar 

  • Ulaby, F. T., Dubois, P. C., & Van Zyl, J. (1996). Radar map** of surface soil moisture. Journal of Hydrology, 184(1–2), 57–84.

    Article  CAS  Google Scholar 

  • Ulaby, F. (1975). Radar response to vegetation. IEEE Transactions on Antennas and Propagation, 23(1), 36–45.

  • Valenzuela, G. R. (1978). Theories for the interaction of electromagnetic and oceanic waves–A review. Boundary-Layer Meteorology, 13(1–4), 61–85.

    Article  Google Scholar 

  • Van Tricht, K., Gobin, A., Gilliams, S., & Piccard, I. (2018). Synergistic use of radar Sentinel-1 and optical Sentinel-2 imagery for crop map**: A case study for Belgium. Remote Sensing, 10(10), 1642.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deeksha Mishra.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Appendix 1 Temporal mean value of bands for land cover fields
Appendix 2 Correlations matrix

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, D., Pathak, G., Singh, B.P. et al. Crop classification by using dual-pol SAR vegetation indices derived from Sentinel-1 SAR-C data. Environ Monit Assess 195, 115 (2023). https://doi.org/10.1007/s10661-022-10591-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10591-x

Keywords

Navigation