Log in

Constructed wetlands for the removal of pharmaceuticals and personal care products (PPCPs) from wastewater: origin, impacts, treatment methods, and SWOT analysis

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The continuous exposure to pharmaceuticals and personal care products can lead to a series of individual antagonistic and synergistic effects and long-lasting toxicity to humans and aquatic lives. This may also lead to develo** antibiotic resistance, teratogenic, carcinogenic, and endocrine-disrupting effects. However, several PPCPs are also considered biologically active for non-target aquatic organisms, such as mosquito fish, goldfish, and the algae Pseudokirchneriella subcapitata. Various physicochemical methods such as ozonation, photolysis, and membrane separation are recognized for the effective removal of PPCPs. However, the high operation and maintenance costs and associated ecological impacts have limited their further use. Constructed wetlands are considered eco-friendly and sustainable for the removal of pharmaceuticals and personal care products together with antibiotic resistance genes. Several mechanisms such as sorption, biodegradation, oxidation, photodegradation, volatilization, and hydrolysis are occurring during the phytoremediation of PPCPs. During these processes, more than 50% of PPCPs can be eliminated through constructed wetlands. They also offer several additional benefits as obtained macrophytic biomass may be used as raw material in pulp and paper industries and a source for second-generation biofuel production. In this study, we have discussed the origin and impacts of PPCPs together with their treatment methods. We have also investigated the strengths, weaknesses, opportunities, and threats associated with constructed wetlands during the treatment of wastewater laden with pharmaceutical and personal care products.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abd Kadir, A., Abdullah, S. R. S., Othman, B. A., Hasan, H. A., Othman, A. R., Imron, M. F., & Kurniawan, S. B. (2020). The dual function of Lemna minor and Azolla pinnata as phytoremediators for palm oil mill effluent and feedstock. Chemosphere, 259, 127468.

    Article  Google Scholar 

  • Abdullah, S. R. S., Al-Baldawi, I. A., Almansoory, A. F., Purwanti, I. F., Al-Sbani, N. H., & Sharuddin, S. S. N. (2020). Plant-assisted remediation of hydrocarbons in water and soil: Application, mechanisms, challenges and opportunities. Chemosphere, 247, 125932.

    Article  CAS  Google Scholar 

  • Al-Baldawi, I. A., Mohammed, A. A., Mutar, Z. H., Abdullah, S. R. S., Jasim, S. S., & Almansoory, A. F. (2021). Application of phytotechnology in alleviating pharmaceuticals and personal care products (PPCPs) in wastewater: Source, impacts, treatment, mechanisms, fate, and SWOT analysis. Journal of Cleaner Production, 319, 128584.

    Article  CAS  Google Scholar 

  • Alhaji, N. B., & Isola, T. O. (2018). Antimicrobial usage by pastoralists in food animals in North-central Nigeria: The associated socio-cultural drivers for antimicrobials misuse and public health implications. One Health, 6, 41–47.

    Article  Google Scholar 

  • Archer, E., Petrie, B., Kasprzyk-Hordern, B., & Wolfaardt, G. M. (2017). The fate of pharmaceuticals and personal care products (PPCPs), endocrine-disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters. Chemosphere, 174, 437–446.

    Article  CAS  Google Scholar 

  • Auvinen, H., Gebhardt, W., Linnemann, V., Du Laing, G., & Rousseau, D. P. (2017). Laboratory-and full-scale studies on the removal of pharmaceuticals in an aerated constructed wetland: Effects of aeration and hydraulic retention time on the removal efficiency and assessment of the aquatic risk. Water Science and Technology, 76(6), 1457–1465.

    Article  CAS  Google Scholar 

  • Ávila, C., & García, J. (2015). Pharmaceuticals and personal care products (PPCPs) in the environment and their removal from wastewater through constructed wetlands. In Comprehensive analytical chemistry (Vol. 67, pp. 195–244). Elsevier.

  • Ávila, C., Pedescoll, A., Matamoros, V., Bayona, J. M., & García, J. (2010). Capacity of a horizontal subsurface flow constructed wetland system for the removal of emerging pollutants: An injection experiment. Chemosphere, 81, 1137–1142.

    Article  Google Scholar 

  • Ávila, C., Pelissari, C., Sezerino, P. H., Sgroi, M., Roccaro, P., & García, J. (2017). Enhancement of total nitrogen removal through effluent recirculation and fate of PPCPs in a hybrid constructed wetland system treating urban wastewater. Science of the Total Environment, 584, 414–425.

    Article  Google Scholar 

  • Ávila, C., Reyes, C., Bayona, J. M., & García, J. (2013). Emerging organic contaminant removal depending on primary treatment and operational strategy in horizontal subsurface flow constructed wetlands: Influence of redox. Water Research, 47(1), 315–325.

    Article  Google Scholar 

  • Bartrons, M., & Peñuelas, J. (2017). Pharmaceuticals and personal care products in plants. Trends in Plant Science, 22(3), 194–203.

    Article  CAS  Google Scholar 

  • Bi, R., Zhou, C., Jia, Y., Wang, S., Li, P., Reichwaldt, E. S., & Liu, W. (2019). Giving waterbodies the treatment, they need: A critical review of the application of constructed floating wetlands. Journal of Environmental Management, 238, 484–498.

    Article  CAS  Google Scholar 

  • Button, M., Cosway, K., Sui, J., & Weber, K. (2019). Impacts and fate of triclosan and sulfamethoxazole in intensified re-circulating vertical flow constructed wetlands. Science of the Total Environment, 649, 1017–1028.

    Article  CAS  Google Scholar 

  • Chaves, M. D. J. S., Barbosa, S. C., de Melo Malinowski, M., Volpato, D., Castro, Í. B., dos Santos Franco, T. C. R., & Primel, E. G. (2020). Pharmaceuticals and personal care products in a Brazilian wetland of international importance: Occurrence and environmental risk assessment. Science of the Total Environment, 734, 139374.

    Article  CAS  Google Scholar 

  • Chen, X., Hu, Z., Zhang, Y., Zhuang, L., Zhang, J., Li, J., & Hu, H. (2018). Removal processes of carbamazepine in constructed wetlands treating secondary effluent: A review. Water, 10(10), 1351.

    Article  Google Scholar 

  • Chen, Y., Vymazal, J., Březinová, T., Koželuh, M., Kule, L., Huang, J., & Chen, Z. (2016). Occurrence, removal and environmental risk assessment of pharmaceuticals and personal care products in rural wastewater treatment wetlands. Science of the Total Environment, 566, 1660–1669.

    Article  Google Scholar 

  • Chopra, S., & Kumar, D. (2018). Pharmaceuticals and personal care products (PPCPs) as emerging environmental pollutants: Toxicity and risk assessment. In Advances in animal biotechnology and its applications (pp. 337–353). Springer, Singapore.

  • Della Porta, A., Bornstein, K., Coye, A., Montrief, T., Long, B., & Parris, M. A. (2020). Acute chloroquine and hydroxychloroquine toxicity: A review for emergency clinicians. The American Journal of Emergency Medicine, 38(10), 2209–2217.

    Article  Google Scholar 

  • Dey, S., Bano, F., & Malik, A. (2019). Pharmaceuticals and personal care product (PPCP) contamination—A global discharge inventory. In Pharmaceuticals and personal care products: waste management and treatment technology (pp. 1–26). Butterworth-Heinemann.

  • Dhir, B. (2019). Removal of pharmaceuticals and personal care products by aquatic plants. In Pharmaceuticals and personal care products: Waste management and treatment technology (pp. 321–340). Butterworth-Heinemann.

  • Dordio, A., & Carvalho, A. J. P. (2013). Constructed wetlands with light expanded clay aggregates for agricultural wastewater treatment. Science of the Total Environment, 463, 454–461.

    Article  Google Scholar 

  • Dordio, A., & Carvalho, A. J. P. (2018). Removal processes of pharmaceuticals in constructed wetlands. Constructed Wetlands for Industrial Wastewater Treatment, 343–403.

  • Ebele, A. J., Abdallah, M. A. E., & Harrad, S. (2017). Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerging Contaminants, 3(1), 1–16.

    Article  Google Scholar 

  • Eggen, T., & Vogelsang, C. (2015). Occurrence and fate of pharmaceuticals and personal care products in wastewater. In Comprehensive Analytical Chemistry (Vol. 67, pp. 245–294). Elsevier.

  • Ewadh, H. M., Abdullah, S. R., Anwar, N., & Hasan, H. A. (2017). Pharmaceuticals and personal care products: Sources, toxicity in the environment, regulations and removal technologies. Journal of Chemical and Pharmaceutical Sciences., 10, 1180–1187.

    CAS  Google Scholar 

  • Fadhil, N. M., & Al Baldawi, I. A. W. (2020). Biodegradation of total petroleum hydrocarbon from Al-Daura refinery wastewater by rhizobacteria. Journal of Engineering, 26(1), 14–23.

    Google Scholar 

  • Ferreira, A. R., Ribeiro, A., & Couto, N. (2017). Remediation of pharmaceutical and personal care products (PPCPs) in constructed wetlands: Applicability and new perspectives. In Phytoremediation (pp. 277–292). Springer, Cham.

  • Francini, A., Mariotti, L., Di Gregorio, S., Sebastiani, L., & Andreucci, A. (2018). Removal of micropollutants from urban wastewater by constructed wetlands with Phragmites australis and Salix matsudana. Environmental Science and Pollution Research, 25(36), 36474–36484.

    Article  CAS  Google Scholar 

  • Froehner, S., Piccioni, W., Machado, K. S., & Aisse, M. M. (2011). Removal capacity of caffeine, hormones, and bisphenol by aerobic and anaerobic sewage treatment. Water, Air, & Soil Pollution, 216(1), 463–471.

    Article  CAS  Google Scholar 

  • Gorito, A. M., Ribeiro, A. R., Almeida, C. M. R., & Silva, A. M. (2017). A review on the application of constructed wetlands for the removal of priority substances and contaminants of emerging concern listed in recently launched EU legislation. Environmental Pollution, 227, 428–443.

    Article  CAS  Google Scholar 

  • He, Y., Sutton, N. B., Lei, Y., Rijnaarts, H. H., & Langenhoff, A. A. (2018). Fate and distribution of pharmaceutically active compounds in mesocosm constructed wetlands. Journal of Hazardous Materials, 357, 198–206.

    Article  CAS  Google Scholar 

  • Hijosa-Valsero, M., Fink, G., Schlüsener, M. P., Sidrach-Cardona, R., Martín-Villacorta, J., Ternes, T., & Bécares, E. (2011). Removal of antibiotics from urban wastewater by constructed wetland optimization. Chemosphere, 83(5), 713–719.

    Article  CAS  Google Scholar 

  • Hijosa-Valsero, M., Matamoros, V., Sidrach-Cardona, R., Martín-Villacorta, J., Bécares, E., & Bayona, J. M. (2010). Comprehensive assessment of the design configuration of constructed wetlands for the removal of pharmaceuticals and personal care products from urban wastewaters. Water Research, 44(12), 3669–3678.

    Article  CAS  Google Scholar 

  • Hijosa-Valsero, M., Reyes-Contreras, C., Domínguez, C., Bécares, E., & Bayona, J. M. (2016). Behaviour of pharmaceuticals and personal care products in constructed wetland compartments: Influent, effluent, pore water, substrate and plant roots. Chemosphere, 145, 508–517.

    Article  CAS  Google Scholar 

  • Hijosa-Valsero, M., Sidrach-Cardona, R., Pedescoll, A., Sánchez, O., & Bécares, E. (2018). Role of bacterial diversity on PPCPs removal in constructed wetlands. Constructed Wetlands for Industrial Wastewater Treatment, 405–426.

  • Hoyett, Z. (2018). Pharmaceuticals and personal care products: Risks, challenges and solutions. Risk Assessment.

  • Hu, X., **e, H., Zhuang, L., Zhang, J., Hu, Z., Liang, S., & Feng, K. (2021). A review on the role of plant in pharmaceuticals and personal care products (PPCPs) removal in constructed wetlands. Science of the Total Environment, 780, 146637.

    Article  CAS  Google Scholar 

  • Huang, Y., LaTorre, A., Barceló, D., García, J., Aguirre, P., Mujeriego, R., & Bayona, J. M. (2004). Factors affecting linear alkylbenzene sulfonates removal in subsurface flow constructed wetlands. Environmental Science & Technology, 38(9), 2657–2663.

    Article  CAS  Google Scholar 

  • Hussain, I., Aleti, G., Naidu, R., Puschenreiter, M., Mahmood, Q., Rahman, M. M., & Reichenauer, T. G. (2018). Microbe and plant assisted-remediation of organic xenobiotics and its enhancement by genetically modified organisms and recombinant technology: A review. Science of the Total Environment, 628, 1582–1599.

    Article  Google Scholar 

  • Ilyas, H., & van Hullebusch, E. D. (2019). Role of design and operational factors in the removal of pharmaceuticals by constructed wetlands. Water, 11(11), 2356.

    Article  CAS  Google Scholar 

  • Ilyas, H., & van Hullebusch, E. D. (2020a). Performance comparison of different constructed wetlands designs for the removal of personal care products. International Journal of Environmental Research and Public Health, 17(9), 3091.

    Article  CAS  Google Scholar 

  • Ilyas, H., & van Hullebusch, E. D. (2020b). The influence of design and operational factors on the removal of personal care products by constructed wetlands. Water, 12(5), 1367.

    Article  CAS  Google Scholar 

  • Ilyas, H., Masih, I., & van Hullebusch, E. D. (2020). Pharmaceuticals’ removal by constructed wetlands: A critical evaluation and meta-analysis on performance, risk reduction, and role of physicochemical properties on removal mechanisms. Journal of Water and Health, 18(3), 253–291.

    Article  Google Scholar 

  • Imfeld, G., Braeckevelt, M., Kuschk, P., & Richnow, H. H. (2009). Monitoring and assessing processes of organic chemicals removal in constructed wetlands. Chemosphere, 74(3), 349–362.

    Article  CAS  Google Scholar 

  • Jensen, O., & Wu, H. (2018). Urban water security indicators: Development and pilot. Environmental Science & Policy, 83, 33–45.

    Article  Google Scholar 

  • Junaid, M., Wang, Y., Hamid, N., Deng, S., Li, W. G., & Pei, D. S. (2019). Prioritizing selected PPCPs on the basis of environmental and toxicogenetic concerns: A toxicity estimation to confirmation approach. Journal of Hazardous Materials, 380, 120828.

    Article  CAS  Google Scholar 

  • Kalabić, D., Drazić, G., Drazić, N., & Ikanović, J. (2019). Production of agri-energy crop Miscanthus gigantheus on land degraded by power industry: SWOT analysis. Polish Journal of Environmental Studies, 28(5), 3243–3251.

    Article  Google Scholar 

  • Kaur, H., Hippargi, G., Pophali, G. R., & Bansiwal, A. K. (2019). Treatment methods for removal of pharmaceuticals and personal care products from domestic wastewater. In Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology (pp. 129–150). Butterworth-Heinemann.

  • Koottatep, T., Vo, H. N. P., Chapagain, S. K., Panuvatvanich, A., Polprasert, C., & Ahn, K. (2017). Performance evaluation of selected aquatic plants and iron-rich media for removal of PPCPs from wastewater in constructed wetlands. Desalination and Water Treatment, 91, 281–286.

    Article  CAS  Google Scholar 

  • K’oreje, K. O., Kandie, F. J., Vergeynst, L., Abira, M. A., Van Langenhove, H., Okoth, M., & Demeestere, K. (2018). Occurrence, fate and removal of pharmaceuticals, personal care products and pesticides in wastewater stabilization ponds and receiving rivers in the Nzoia Basin, Kenya. Science of the Total Environment, 637, 336–348.

    Article  Google Scholar 

  • Kotyza, J., Soudek, P., Kafka, Z., & Vaněk, T. (2010). Phytoremediation of pharmaceuticals- a preliminary study. International Journal of Phytoremediation, 12(3), 306–316.

    Article  CAS  Google Scholar 

  • Kumar, S., & Dutta, V. (2019). Constructed wetland microcosms as sustainable technology for domestic wastewater treatment: An overview. Environmental Science and Pollution Research, 26(12), 11662–11673.

    Article  CAS  Google Scholar 

  • Kumar, S., Nand, S., Dubey, D., Pratap, B., & Dutta, V. (2020). Variation in extracellular enzyme activities and their influence on the performance of surface-flow constructed wetland microcosms (CWMs). Chemosphere, 251, 126377.

    Article  CAS  Google Scholar 

  • Kumar, S., Nand, S., Pratap, B., Dubey, D., & Dutta, V. (2021). Removal kinetics and treatment efficiency of heavy metals and other wastewater contaminants in a constructed wetland microcosm: Does mixed macrophytic combinations perform better? Journal of Cleaner Production, 327, 129468.

    Article  CAS  Google Scholar 

  • Lee, J. H. (2013). An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnology and Bioprocess Engineering, 18(3), 431–439.

    Article  CAS  Google Scholar 

  • Li, J., Zhou, Q., & Campos, L. C. (2017). Removal of selected emerging PPCP compounds using greater duckweed (Spirodela polyrhiza) based lab-scale free water constructed wetland. Water Research, 126, 252–261.

    Article  CAS  Google Scholar 

  • Li, W. L., Zhang, Z. F., Ma, W. L., Liu, L. Y., Song, W. W., & Li, Y. F. (2018). An evaluation on the intra-day dynamics, seasonal variations and removal of selected pharmaceuticals and personal care products from urban wastewater treatment plants. Science of the Total Environment, 640, 1139–1147.

    Article  Google Scholar 

  • Li, W., Nanaboina, V., Chen, F., & Korshin, G. V. (2016). Removal of polycyclic synthetic musks and antineoplastic drugs in ozonated wastewater: Quantitation based on the data of differential spectroscopy. Journal of Hazardous Materials, 304, 242–250.

    Article  CAS  Google Scholar 

  • Li, Y., Zhang, S., Zhang, W., **ong, W., Ye, Q., Hou, X., & Wang, P. (2019). Life cycle assessment of advanced wastewater treatment processes: Involving 126 pharmaceuticals and personal care products in life cycle inventory. Journal of Environmental Management, 238, 442–450.

    Article  CAS  Google Scholar 

  • Li, Y., Zhu, G., Ng, W. J., & Tan, S. K. (2014). A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: Design, performance and mechanism. Science of the Total Environment, 468, 908–932.

    Article  Google Scholar 

  • Liang, Y., Zhu, H., Bañuelos, G., Shutes, B., Yan, B., & Cheng, X. (2018). Removal of sulfamethoxazole from salt-laden wastewater in constructed wetlands affected by plant species, salinity levels and co-existing contaminants. Chemical Engineering Journal, 341, 462–470.

    Article  CAS  Google Scholar 

  • Lin, Y., Zhao, Y., Ruan, X., Barzee, T. J., Zhang, Z., Kong, H., & Zhang, X. (2020). The potential of constructed wetland plants for bioethanol production. BioEnergy Research, 13(1), 43–49.

    Article  CAS  Google Scholar 

  • Liu, J., Dan, X., Lu, G., Shen, J., Wu, D., & Yan, Z. (2018a). Investigation of pharmaceutically active compounds in an urban receiving water: Occurrence, fate and environmental risk assessment. Ecotoxicology and Environmental Safety, 154, 214–220.

    Article  CAS  Google Scholar 

  • Liu, J., Wang, J., Zhao, C., Hay, A. G., **e, H., & Zhan, J. (2016). Triclosan removal in wetlands constructed with different aquatic plants. Applied Microbiology and Biotechnology, 100(3), 1459–1467.

    Article  CAS  Google Scholar 

  • Liu, M., Yin, H., & Wu, Q. (2019a). Occurrence and health risk assessment of pharmaceutical and personal care products (PPCPs) in tap water of Shanghai. Ecotoxicology and Environmental Safety, 183, 109497.

    Article  CAS  Google Scholar 

  • Liu, X., Guo, X., Liu, Y., Lu, S., **, B., Zhang, J., & Bi, B. (2019b). A review on removing antibiotics and antibiotic resistance genes from wastewater by constructed wetlands: Performance and microbial response. Environmental Pollution, 254, 112996.

    Article  CAS  Google Scholar 

  • Liu, Y. L., Wang, X. M., Yang, H. W., & **e, Y. F. (2018b). Adsorption of pharmaceuticals onto isolated polyamide active layer of NF/RO membranes. Chemosphere, 200, 36–47.

    Article  CAS  Google Scholar 

  • Lyu, S., Chen, W., Qian, J., Wen, X., & Xu, J. (2019). Prioritizing environmental risks of pharmaceuticals and personal care products in reclaimed water on urban green space in Bei**g. Science of the Total Environment, 697, 133850.

    Article  CAS  Google Scholar 

  • Matamoros, V., Nguyen, L. X., Arias, C. A., Salvadó, V., & Brix, H. (2012). Evaluation of aquatic plants for removing polar microcontaminants: A microcosm experiment. Chemosphere, 88(10), 1257–1264.

    Article  CAS  Google Scholar 

  • Meng, H., Zhang, X., Zhou, Z., Luo, L., Lan, W., Lin, J. G., Li, X. Y., & Gu, J. D. (2021). Simultaneous occurrence and analysis of both anammox and n-damo bacteria in five full-scale wastewater treatment plants. International Biodeterioration & Biodegradation, 156, 105112.

    Article  CAS  Google Scholar 

  • Mompelat, S., Le Bot, B., & Thomas, O. (2009). Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environment International, 35(5), 803–814.

    Article  CAS  Google Scholar 

  • Nabi Bidhendi, G., Daryabeigi Zand, A., Vaezi Heir, A., & Nabi Bidhendi, A. (2020). Prioritizing of strategies for the ecological design of urban waste transfer stations using SWOT analysis. Journal of Environmental Science Studies, 5(2), 2665–2672.

    Google Scholar 

  • Ngo, T. H., Van, D. A., Tran, H. L., Nakada, N., Tanaka, H., & Huynh, T. H. (2021). Occurrence of pharmaceutical and personal care products in Cau River, Vietnam. Environmental Science and Pollution Research, 28, 12082–12091.

    Article  CAS  Google Scholar 

  • Nguyen, P. M., Afzal, M., Ullah, I., Shahid, N., Baqar, M., & Arslan, M. (2019). Removal of pharmaceuticals and personal care products using constructed wetlands: Effective plant-bacteria synergism may enhance degradation efficiency. Environmental Science and Pollution Research, 26(21), 21109–21126.

    Article  Google Scholar 

  • Noguera-Oviedo, K., & Aga, D. S. (2016). Lessons learned from more than two decades of research on emerging contaminants in the environment. Journal of Hazardous Materials, 316, 242–251.

    Article  CAS  Google Scholar 

  • Nowrotek, M., Sochacki, A., Felis, E., & Miksch, K. (2016). Removal of diclofenac and sulfamethoxazole from synthetic municipal wastewater in microcosm downflow constructed wetlands: Start-up results. International Journal of Phytoremediation, 18(2), 157–163.

    Article  CAS  Google Scholar 

  • Nuel, M., Laurent, J., Bois, P., Heintz, D., & Wanko, A. (2018). Seasonal and aging effect on the behavior of 86 drugs in a full-scale surface treatment wetland: Removal efficiencies and distribution in plants and sediments. Science of the Total Environment, 615, 1099–1109.

    Article  CAS  Google Scholar 

  • Ort, C., Van Nuijs, A. L., Berset, J. D., Bijlsma, L., Castiglioni, S., Covaci, A., & Thomas, K. V. (2014). Spatial differences and temporal changes in illicit drug use in Europe quantified by wastewater analysis. Addiction, 109(8), 1338–1352.

    Article  Google Scholar 

  • Patel, M., Kumar, R., Kishor, K., Mlsna, T., Pittman, C. U., Jr., & Mohan, D. (2019). Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods. Chemical Reviews, 119(6), 3510–3673.

    Article  CAS  Google Scholar 

  • Rabello, V. M., Teixeira, L. C. R. S., Gonçalves, A. P. V., & de Sá Salomão, A. L. (2019). The efficiency of constructed wetlands and algae tanks for the removal of pharmaceuticals and personal care products (PPCPs): A systematic review. Water, Air, & Soil Pollution, 230(10), 1–12.

    Article  CAS  Google Scholar 

  • Rajapaksha, A. U., Premarathna, K. S. D., Gunarathne, V., Ahmed, A., & Vithanage, M. (2019). Sorptive removal of pharmaceutical and personal care products from water and wastewater. In Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology (pp. 213–238). Butterworth-Heinemann.

  • Ramírez-Morales, D., Masís-Mora, M., Montiel-Mora, J. R., Cambronero-Heinrichs, J. C., Briceño-Guevara, S., Rojas-Sánchez, C. E., & Rodríguez-Rodríguez, C. E. (2020). Occurrence of pharmaceuticals, hazard assessment and ecotoxicological evaluation of wastewater treatment plants in Costa Rica. Science of the Total Environment, 746, 141200.

    Article  Google Scholar 

  • Ren, X., Zhang, M., Wang, H., Dai, X., & Chen, H. (2021). Removal of personal care products in greywater using membrane bioreactor and constructed wetland methods. Science of the Total Environment, 797, 148773.

    Article  CAS  Google Scholar 

  • Roca, I., Akova, M., Baquero, F., Carlet, J., Cavaleri, M., Coenen, S., & Vila, J. (2015). The global threat of antimicrobial resistance: Science for intervention. New Microbes and New Infections, 6, 22–29.

    Article  CAS  Google Scholar 

  • Rodriguez-Narvaez, O. M., Peralta-Hernandez, J. M., Goonetilleke, A., & Bandala, E. R. (2017). Treatment technologies for emerging contaminants in water: A review. Chemical Engineering Journal, 323, 361–380.

    Article  CAS  Google Scholar 

  • Rout, P. R., Zhang, T. C., Bhunia, P., & Surampalli, R. Y. (2021). Treatment technologies for emerging contaminants in wastewater treatment plants: A review. Science of the Total Environment, 753, 141990.

    Article  CAS  Google Scholar 

  • Sgroi, M., Pelissari, C., Roccaro, P., Sezerino, P. H., García, J., Vagliasindi, F. G., & Ávila, C. (2018). Removal of organic carbon, nitrogen, emerging contaminants and fluorescing organic matter in different constructed wetland configurations. Chemical Engineering Journal, 332, 619–627.

    Article  CAS  Google Scholar 

  • Sharif, F., Westerhoff, P., & Herckes, P. (2014). Impact of hydraulic and carbon loading rates of constructed wetlands on contaminants of emerging concern (CECs) removal. Environmental Pollution, 185, 107–115.

    Article  CAS  Google Scholar 

  • Sharma, B. M., Bečanová, J., Scheringer, M., Sharma, A., Bharat, G. K., Whitehead, P. G., & Nizzetto, L. (2019). Health and ecological risk assessment of emerging contaminants (pharmaceuticals, personal care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin, India. Science of the Total Environment, 646, 1459–1467.

    Article  CAS  Google Scholar 

  • Shetty, A., & Gupta, G. (2018). Design methodologies for eco-friendly pharmaceutical waste management-A review. In International Conference on Sustainable Waste Management through Design (pp. 586–595). Springer, Cham.

  • Sochacki, A., Felis, E., Bajkacz, S., Nowrotek, M., & Miksch, K. (2018). Removal and transformations of diclofenac and sulfamethoxazole in a two-stage constructed wetland system. Ecological Engineering, 122, 159–168.

    Article  Google Scholar 

  • Song, H. L., Nakano, K., Taniguchi, T., Nomura, M., & Nishimura, O. (2009). Estrogen removal from treated municipal effluent in small-scale constructed wetland with different depth. Bioresource Technology, 100(12), 2945–2951.

    Article  CAS  Google Scholar 

  • Stefanakis, A. I. (2018). Constructed Wetlands case studies for the treatment of water polluted with fuel and oil hydrocarbons. In Phytoremediation (pp. 151–167). Springer, Cham.

  • Sutar, R. S., Motghare, V. M., Kollur, S. C., Parikh, Y., & Asolekar, S. R. (2019). Significance of addressing persistence of pathogens and micropollutants to enhance reuse of treated sewages using constructed wetlands. In Advances in Waste Management (pp. 355–367). Springer, Singapore.

  • Tarpani, R. R. Z., & Azapagic, A. (2018). Life cycle environmental impacts of advanced wastewater treatment techniques for removal of pharmaceuticals and personal care products (PPCPs). Journal of Environmental Management, 215, 258–272.

    Article  Google Scholar 

  • Thomas, K. V., Bijlsma, L., Castiglioni, S., Covaci, A., Emke, E., Grabic, R., & de Voogt, P. (2012). Comparing illicit drug use in 19 European cities through sewage analysis. Science of the Total Environment, 432, 432–439.

    Article  CAS  Google Scholar 

  • Thomas, R., Gough, R., & Freeman, C. (2017). Linear alkylbenzene sulfonate (LAS) removal in constructed wetlands: The role of plants in the treatment of a typical pharmaceutical and personal care product. Ecological Engineering, 106, 415–422.

    Article  Google Scholar 

  • Tondera, K., Ruppelt, J. P., Pinnekamp, J., Kistemann, T., & Schreiber, C. (2019). Reduction of micropollutants and bacteria in a constructed wetland for combined sewer overflow treatment after 7 and 10 years of operation. Science of the Total Environment, 651, 917–927.

    Article  CAS  Google Scholar 

  • Toro-Vélez, A. F., Madera-Parra, C. A., Peña-Varón, M. R., Lee, W. Y., Bezares-Cruz, J. C., Walker, W. S., & Lens, P. N. L. (2016). BPA and NP removal from municipal wastewater by tropical horizontal subsurface constructed wetlands. Science of the Total Environment, 542, 93–101.

    Article  Google Scholar 

  • Tripathi, S., Singh, V. K., Srivastava, P., Singh, R., Devi, R. S., Kumar, A., & Bhadouria, R. (2020). Phytoremediation of organic pollutants: Current status and future directions. In Abatement of environmental pollutants (pp. 81–105). Elsevier.

  • Truu, M., Juhanson, J., & Truu, J. (2009). Microbial biomass, activity and community composition in constructed wetlands. Science of the Total Environment, 407(13), 3958–3971.

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency. (2012). Pharmaceuticals and personal care products (PPCP).

  • Vo, H. N. P., Bui, X. T., Nguyen, T. M. H., Koottatep, T., & Bandyopadhyay, A. (2018). Insights of the removal mechanisms of pharmaceutical and personal care products in constructed wetlands. Current Pollution Reports, 4(2), 93–103.

    Article  Google Scholar 

  • Wan, W., Gadd, G. M., Yang, Y. Y., Yuan, W., Gu, J., Ye, L., & Liu, W. (2021). Environmental adaptation is stronger for abundant rather than for rare microorganisms in wetland soils from the Qinghai-Tibet Plateau. Molecular Ecology, 30, 2390–2403.

    Article  Google Scholar 

  • Wang, Y., Yin, T., Kelly, B. C., & Gin, K. Y. H. (2019). Bioaccumulation behavior of pharmaceuticals and personal care products in a constructed wetland. Chemosphere, 222, 275–285.

    Article  CAS  Google Scholar 

  • Wu, H., Zhang, J., Ngo, H. H., Guo, W., Hu, Z., Liang, S., & Liu, H. (2015). A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresource Technology, 175, 594–601.

    Article  CAS  Google Scholar 

  • Xu, J., Xu, Y., Wang, H., Guo, C., Qiu, H., He, Y., & Meng, W. (2015). Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river. Chemosphere, 119, 1379–1385.

    Article  CAS  Google Scholar 

  • Xu, M., Huang, H., Li, N., Li, F., Wang, D., & Luo, Q. (2019a). Occurrence and ecological risk of pharmaceuticals and personal care products (PPCPs) and pesticides in typical surface watersheds, China. Ecotoxicology and Environmental Safety, 175, 289–298.

    Article  CAS  Google Scholar 

  • Xu, S., Zhou, S., **ng, L., Shi, P., Shi, W., Zhou, Q., & Li, A. (2019b). Fate of organic micropollutants and their biological effects in a drinking water source treated by a field-scale constructed wetland. Science of the Total Environment, 682, 756–764.

    Article  CAS  Google Scholar 

  • Yan, Q. (2014). Transportation and distribution of typical pharmaceutically active compounds in the water system of city and their removal in constructed wetland system (CWs). Doctor Chongqing University.

  • Yang, Y., Ok, Y. S., Kim, K. H., Kwon, E. E., & Tsang, Y. F. (2017). Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Science of the Total Environment, 596, 303–320.

    Article  Google Scholar 

  • Yang, Y., Zhao, Y., Liu, R., & Morgan, D. (2018). Global development of various emerged substrates utilized in constructed wetlands. Bioresource Technology, 261, 441–452.

    Article  CAS  Google Scholar 

  • Zhang, B. Y., Zheng, J. S., & Sharp, R. G. (2010). Phytoremediation in engineered wetlands: Mechanisms and applications. Procedia Environmental Sciences, 2, 1315–1325.

    Article  Google Scholar 

  • Zhang, D., Gersberg, R. M., Ng, W. J., & Tan, S. K. (2014). Removal of pharmaceuticals and personal care products in aquatic plant-based systems: A review. Environmental Pollution, 184, 620–639.

    Article  CAS  Google Scholar 

  • Zhang, D., Luo, J., Lee, Z. M. P., Maspolim, Y., Gersberg, R. M., Liu, Y., & Ng, W. J. (2016). Characterization of bacterial communities in wetland mesocosms receiving pharmaceutical-enriched wastewater. Ecological Engineering, 90, 215–224.

    Article  Google Scholar 

  • Zhang, D., Ni, W., Gersberg, R. M., Ng, W. J., & Tan, S. K. (2015). Performance characterization of pharmaceutical removal by horizontal subsurface flow constructed wetlands using multivariate analysis. Clean-Soil, Air, Water, 43(8), 1181–1189.

    Article  Google Scholar 

  • Zhang, S., Song, H. L., Yang, X. L., Li, H., & Wang, Y. W. (2018a). A system composed of a biofilm electrode reactor and a microbial fuel cell-constructed wetland exhibited efficient sulfamethoxazole removal but induced sul genes. Bioresource Technology, 256, 224–231.

    Article  CAS  Google Scholar 

  • Zhang, X., **g, R., Feng, X., Dai, Y., Tao, R., Vymazal, J., & Yang, Y. (2018b). Removal of acidic pharmaceuticals by small-scale constructed wetlands using different design configurations. Science of the Total Environment, 639, 640–647.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Environmental Science, Babasaheb Bhimrao Ambedkar (Central) University, Lucknow, and the Divisional Forest Office, South Kheri Division, Lakhimpur Kheri, for providing necessary facilities throughout this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saroj Kumar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Pratap, B., Dubey, D. et al. Constructed wetlands for the removal of pharmaceuticals and personal care products (PPCPs) from wastewater: origin, impacts, treatment methods, and SWOT analysis. Environ Monit Assess 194, 885 (2022). https://doi.org/10.1007/s10661-022-10540-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10540-8

Keywords

Navigation