Log in

Identification of leachate infiltration and its flow pathway in landfill by means of electrical resistivity tomography (ERT)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Sanitary landfills are a well-planned engineering work for final disposal of municipal solid waste in order to minimize the environmental impacts in soil and groundwater. Therefore, several control systems are installed such as liners and leachate and biogas collectors. However, the establishment of landfill in vulnerable areas, the inadequate operations, and failures in collectors and liner systems can cause subsurface contamination. The discovery of eventual leachate leakage usually is based on chemical analyses of groundwater using monitoring wells; which may not be representative in spatial terms. This work involves a geophysical monitoring of the leachate percolation in a landfill waste cell closed in 2014, in which geomembrane boreholes and aquifer contamination have been proved. The DC resistivity method was applied by means of electrical resistivity tomography (ERT) in order to detect eventual contrasts in electrical properties. Twelve ERT lines have been carried out in a steady mesh during three years of study (2016, 2017, and 2018). The results of 2016 allowed a clear contrast between zones of leachate percolation into the aquifer and the natural environment. The comparative analyses of the three-year monitoring results reveal a gradual increase in resistivity values in the areas of leachate percolation. The absence of replacement of biodegradable organic matter after 2014 conditions the gradual decrease of leachate salinity. In this sense, the increase in resistivity is an indicator of the tendency for chemical stabilization of the organic waste and existence of natural attenuation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • ABEM (2012) Terrameter LS, Instruction Manual.

  • ABRELPE. (2017). Panorama dos resíduos sólidos no Brasil. São Paulo: ABRELPE.

    Google Scholar 

  • Aizebeokhai, A. P., Olayinka, A. I., Singh, V. S., & Uhuegbu, C. C. (2011). Effectiveness of 3D geoelectrical resistivity imaging using parallel 2D profiles. Int J Phys Sci, 6, 5623–5647.

    Google Scholar 

  • Alter, B. (2012). Environmental consulting fundamentals – investigation and remediation. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Alvarez, P. J. J., & Illman, W. A. (2006). Bioremediation and natural attenuation process fundamentals and mathematical models. Iowa: John Wiley & Sons.

    Google Scholar 

  • Audebert, M., Clément, R., Moreau, S., Duquennoi, C., Loisel, S., & Touzefoltz, N. (2016). Understanding leachate flow in municipal solid waste landfills by combining time-lapse ERT and subsurface flow modelling – Part I: Analysis of infiltration shape on two different waste deposit cells. Waste Manage, 55, 165–175.

    Article  CAS  Google Scholar 

  • Ayolabi, E. A., Oluwatosin, L. B., & Ifekwuna, C. D. (2015). Integrates geophysical and physicochemical assessment of Olushosun sanitary landfill site, southwest Nigeria. Arab J Geosci, 8, 4101–4115.

    Article  CAS  Google Scholar 

  • Chambers, J. E., Kuras, O., Meldrum, P. I., Ogilvy, R. D., & Hollands, J. (2006). Electrical resistivity tomography applied to geologic, hydrogeologic, and engineering investigations at a former waste-disposal site. Geophysics, 71, 231–239.

    Article  Google Scholar 

  • Christensen, T. H. (2011). Solid waste technology & management. Chichester: John Wiley & Sons.

    Google Scholar 

  • Christensen, T. H., Kjeldsen, P., Bjerg, P. L., Jensen, D. L., Christensen, J. B., Baun, A., Albrechtsen, H. J., & Heron, G. (2001). Biogeochemistry of landfill leachate plumes. Applied Geochemistry, 16, 659.

    Article  CAS  Google Scholar 

  • Côrtes, A. R. P., Moreira, C. A., Veloso, D. I. K., Vieira, L. B., & Bergonzoni, F. A. (2016). Geoelectrical prospecting for a copper-sulfide mineralization in the Camaquã sedimentary basin, southern Brazil. Geofísica Internacional, 55(3), 107–117.

    Google Scholar 

  • CPRM - Companhia de Pesquisa de Recursos Minerais, (1995. Levantamentos Geológicos Básicos do Brasil - Folha Cachoeira do Sul SH.22-Y-A. Estado do Rio Grande do Sul. Escala 1:250.000.

  • CPRM - Companhia de Pesquisa de Recursos Minerais. (2000). Mapa de Geodiversidade do Estado do Rio Grande do Sul. Brasil: CPRM.

    Google Scholar 

  • De Carlo, L., Perri, M. T., Caputo, M. C., Deiana, R., Vurro, M., & Cassiani, G. (2013). Characterization of a dismissed landfill via electrical resistivity tomography and mise-à-lamasse method. Journal of Applied Geophysics, 98, 1.

    Article  Google Scholar 

  • Deublein, D., & Steinhauser, A. (2011). Biogas from waste and renewable resources: an introduction (2nd ed.). Berlin: Wiley-VCH.

    Google Scholar 

  • Georgaki, I., Soupios, P., Sakkas, N., Ververidis, F., Trantas, E., Vallianatos, F., & Manios, T. (2008). Evaluating the use of electrical resistivity imaging technique for improving CH4 and CO2 emission rate estimations in landfills. Science of the Total Environment, 389, 522–531.

    Article  CAS  Google Scholar 

  • GEOSOFT. Oasis Montaj How to Guide. 2014 In: http://updates.geosoft.com/downloads/files/how-to-guides/Oasis_montaj_Gridding.pdf. Access in 18. Mar. 2018.

  • Helene, L. P. I., Moreira, C. A., Carrazza, L. P. (2016). Applied geophysics on a soil contaminated site by chromium of a tannery in Motuca (SP). Revista Brasileira de Geofísica, n.3, v.34.

  • Hiebert, F. K., & Bennett, P. C. (1992). Microbial control of silicate weathering in organic rich ground water. Science, 258, 278–281.

    Article  CAS  Google Scholar 

  • Hung, T.-Y., Wang, L. K., & Shammas, N. K. (2014). Handbook of environment and waste management: Land and groundwater pollution control – Volume 2. Toh Tuck Link: World Scientific.

    Book  Google Scholar 

  • Justus, J. de O; Machado, M.L. de A.; Franco, M. do S. M. (1986). Geomorfologia. In: Folha SH.22 Porto Alegre e parte das folhas SH.21 Uruguaiana e SI.22 Lagoa Mirim. Rio de Janeiro: IBGE, p. 313–404.

  • Kearey, P., Brooks, M., & Hill, I. (2002). An introduction to geophysical exploration (3rd ed.). Hobboken: Wiley-Blackwell Science.

    Google Scholar 

  • Knödel, K., Lange, G., & Voigt, H. J. (2007). Enviromental geology: Handbook of fields methods and case studies. Hannover Federal Institute for Geosciences and Natural Resources. Ed: Springer 1357 p.

    Book  Google Scholar 

  • Lehr, J., Hyman, M., Gass, T. S., & Servers, W. J. (2001). Handbook of complex environmental remediation problems. New York: McGraw-Hill Handbooks.

    Google Scholar 

  • Loke, M. H., & Baker, R. D. (1996). Rapid least-squares inversion of apparent resistivity pseudosections by quasi-newton method. Geophysical Prospecting, 44, 131–152.

    Article  Google Scholar 

  • Machado, J. L. F., & Freitas, M. A. (2005). Projeto mapa hidrogeológico do Rio Grande do Sul: relatório final, v. 1. Porto Alegre: CPRM.

    Google Scholar 

  • Maurya, P. K., Ronde, V. K., Fiandaca, G., Balbarini, N., Auken, E., Bjerg, P. L., & Christensen, A. V. (2017). Detailed landfill leachate plume map** using 2D and 3D electrical resistivity tomography – with correlation to ionic strength measured in screens. Journal of Applied Geophysics, 138, 1–8.

    Article  Google Scholar 

  • Meju, M. A. (2000). Geoelectrical investigation of old/abandoned, covered landfill sites in urban areas: model development with a genetic diagnosis approach. Journal of Applied Geophysics, 44(1), 115–150.

    Article  Google Scholar 

  • Moreira, C. A., Munhoz, T., Cavallari, F., & Helene, L. P. I. (2015). Electrical resistivity to detect zones of biogas accbiogásion in a landfill. Geofísica Internacional, 54–54.

  • Moreira, C. A., Lapola, M. M., & Carrara, A. (2016). Comparative analyzes among electrical resistivity tomography arrangements in the characterization of flow structure in free aquifer. Geofísica Internacional, 55(2), 119–129.

    Google Scholar 

  • Moreira, C. A., Helene, L. P. I., Nogara, P., & Ilha, L. M. (2018). Analysis of leaks from geomembrane in a sanitary landfill through models of electrical resistivity thomography in South Brazil. Environmental Earth Science, 77, 7.

    Article  Google Scholar 

  • Park, S., Myeong-jong, Y., Jung-ho, K., & Seung wook, S. (2016). Electrical resistivity imaging (ERI) monitoring for groundwater contamination in an uncontrolled landfill, South Korea. Journal of Applied Geophysics, 135, 1–7.

    Article  Google Scholar 

  • Raga, R., Cossu, R., & Lagekvist, A. (2011). Landfilling: Planning, sitting and design. In T. H. Christensen (Ed.), Solid Waste Technology & Management. Chichester: John Wiley & Sons.

    Google Scholar 

  • Raji, W. O., & Adeyoe, T. O. (2017). Geophysical map** of contaminant leachate around a reclaimed open dumpsite. Journal of King Saud University – Science, 29, 348–3359.

    Article  Google Scholar 

  • Rao, G. T., Rao, V. V. S. G., Padalu, G., Dhakate, R., & Sarma, V. S. (2014). Application of electrical resistivity tomography methods for delineation of groundwater contamination and potential zones. Arabian Journal Geoscience, v, 7, 1373–1384.

    Article  CAS  Google Scholar 

  • Reddy, P. J. (2011). Municipal solid waste management: Processing, energy recovery, global examples. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Reynolds, J. N. (1997). An introduction to applied and environmental geophysics. Baffins Lane: John Wiley & Sons.

    Google Scholar 

  • Sara, M. (2003). Site assessment and remediation handbook (2nd ed.). Lewis Publishers.

  • Sasaki, Y. (1992). Resolution of resistivity tomography inferred from numerical simulation. Geophysical Prospecting, 40(4), 453–463.

  • Tchobanoglous, G. & Kreith, F. (2002). Handbook of solid waste management. Second edition. McGraw Hill Professional.

  • Telford, W. M. W., Geldart, L. P., & Sheriff, R. E. (1990). Applied geophysics. London: Cambridge University Press.

    Book  Google Scholar 

  • Veloso, D.I.K., Moreira, C.A, Côrtes, A.R.P (2015) Integration of geoelectrical methods in the diagnostic of a diesel-contaminated site in Santa Ernestina (SP, BRAZIL). Revista Brasileira de Geofísica, v. 33, n. 4.

  • Ward, S. H. (1990). Resistivity and induced polarization methods. Investigations in Geophysics. Geotechnical and environmental geophysics. Society of Exploration Geophysics, 1(5), 147–198.

    Google Scholar 

  • Williams, P. T. (2005). Waste treatment and disposal. England: John Wiley & Sons.

    Book  Google Scholar 

Download references

Funding

This research was funded by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the equipment used was loaned by the Applied Geology Department, Univ. Estadual Paulista (DGA/UNESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lívia Portes Innocenti Helene.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helene, L.P.I., Moreira, C.A. & Bovi, R.C. Identification of leachate infiltration and its flow pathway in landfill by means of electrical resistivity tomography (ERT). Environ Monit Assess 192, 249 (2020). https://doi.org/10.1007/s10661-020-8206-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-8206-5

Keywords

Navigation