Log in

Effects of population, land cover change, and climatic variability on wetland resource degradation in a Ramsar listed Ghodaghodi Lake Complex, Nepal

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Wetlands support livelihoods of millions of people in develo** countries. However, wetland land cover change, as a result of growing population and subsequent anthropogenic activities, has been evident at a global scale, and ongoing micro-climate alteration has further deteriorating its ecological condition. Nepal is equally vulnerable to wetland changes that can have direct effects on the sustenance of local wetland-dependent people. This study thus attempts to look at how wetland areas of Nepal are undergoing changes, taking a case of Ghodaghodi Lake Complex (GLC). Remote sensing technique, climate, and population data were used in the analysis aided by focus group discussions and key informant interviews. Results showed that total population of the study area has been increased drastically in recent decades. Landsat image analysis for 25 years (1989–2016) depicts changes in the GLC in its land cover, with maximum expansion observed in settlement followed by river and banks, whereas maximum reduction was observed in forests, followed by areas of agricultural land and lake. Similarly, diurnal temperature is increasing while total annual rainfall is slightly decreasing during the same period. Locals have perceived ecological degradation in the GLC due to both anthropogenic pressure and climatic variability. The study outlines linkage of drivers for GLC degradation and finally makes recommendations to achieve longer term sustainability of the lake complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Following the new constitution, in 2015, all old administrative divisions (eg.municipalities and VDCs) were restructured into new 7 provinces, and 753 municipalities and rural municipalities. At present, the GLC lies in Ghodaghodi Municipality.

References

  • Alkama, R., & Cescatti, A. (2016). Biophysical climate impacts of recent changes in global forest cover. Science, 351(6273), 600–604.

    Article  CAS  Google Scholar 

  • Aryal, R. R., Shrestha, H. L., & Khanal, S. (2011). Using Landsat data for assessing forest cover change and fragmentation in Laljhadi corridor of Kanchanpur district, Nepal. Banko Jankari, 21(2), 40–44.

    Article  Google Scholar 

  • Badar, B., Romshoo, S. A., & Khan, M. A. (2013). Modelling catchment hydrological responses in a Himalayan lake as a function of changing land use and land cover. Journal of Earth System Science, 122(2), 433–449.

    Article  Google Scholar 

  • Bajracharya, S. R., & Mool, P. (2009). Glaciers, glacial lakes and glacial lake outburst floods in the Mount Everest region, Nepal. Annals of Glaciology, 50(53), 81–86.

    Article  Google Scholar 

  • Bamford, A. J., Razafindrajao, F., Young, R. P., & Hilton, G. M. (2017). Profound and pervasive degradation of Madagascar’s freshwater wetlands and links with biodiversity. PLoS ONE, 12(8), e0182673.

    Article  CAS  Google Scholar 

  • Behera, M. D., Chitale, V. S., Shaw, A., Roy, P. S., & Murthy, M. S. R. (2012). Wetland monitoring, serving as an index of land use change: a study in Samaspur Wetlands, Uttar Pradesh, India. Journal of the Indian Society of Remote Sensing, 40(2), 287–297.

    Article  Google Scholar 

  • Briga, M., & Verhulst, S. (2015). Large diurnal temperature range increases bird sensitivity to climate change. Scientific Reports, 5, 16600. https://doi.org/10.1038/srep16600.

    Article  Google Scholar 

  • CBS. (1991). National population and housing census 1991 report. Kathmandu, Nepal: Central Bureau of Statistics, National Planning Commission Secretariat, Government of Nepal.

    Google Scholar 

  • CBS. (2001). National population and housing census 2001 report. Kathmandu, Nepal: Central Bureau of Statistics, National Planning Commission Secretariat, Government of Nepal.

    Google Scholar 

  • CBS. (2011). National population and housing census 2011 report. Kathmandu, Nepal: Central Bureau of Statistics, National Planning Commission Secretariat, Government of Nepal.

    Google Scholar 

  • Chaudhary, S., Chettri, N., Uddin, K., Khatri, T. B., Dhakal, M., Bajracharya, B., & Ning, W. (2016). Implications of land cover change on ecosystem services and people’s dependency: a case study from the Koshi Tappu wildlife reserve, Nepal. Ecological Complexity, 28, 200–211.

    Article  Google Scholar 

  • Chettri, N., Uddin, K., Chaudhary, S., & Sharma, E. (2013). Linking spatio-temporal land cover change to biodiversity conservation in the Koshi Tappu Wildlife Reserve, Nepal. Diversity, 5, 335–351.

    Article  Google Scholar 

  • Clair, T. A. (1998). Canadian freshwater wetlands and climate change. Climatic Change, 40, 163–165.

    Article  Google Scholar 

  • Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of the Environment, 37(1), 35–46.

    Article  Google Scholar 

  • Congalton, R. G., & Green, K. (2008). Assessing the accuracy of remotely sensed data: principles and practices. New York, NY, USA: CRC Press.

    Book  Google Scholar 

  • Dahal, N., Shrestha, U. B., Tuitui, A., & Ojha, H. R. (2019). Temporal changes in precipitation and temperature and their implications on the streamflow of Roshi River, central Nepal. Climate, 7(1), 3. https://doi.org/10.3390/cli7010003.

    Article  Google Scholar 

  • Davidson, N. C. (2014). How much wetland has the world lost? Long term and recent trends in global wetland area. Marine and Freshwater Research, 65, 934–941.

    Article  Google Scholar 

  • Debnath, J., Das, N., Ahmed, I., & Bhowmik, M. (2017). Channel migration and its impact on land use/land cover using RS and GIS: a study on Khowai River of Tripura, North East India. The Egyptian Journal of Remote Sensing and Space Sciences, 20, 197–210. https://doi.org/10.1016/j.ejrs.2017.01.009.

    Article  Google Scholar 

  • DoF. (2017). Wetlands of western Nepal: a brief profile of selected lakes (p. 281). Kathamndu, Nepal: Department of Forest, Babarmahal.

    Google Scholar 

  • DoFD. (2012). Country profile – Nepal 2011/2012, fisheries sub-sector. Kathmandu, Nepal: Directorate of Fisheries Development, Kathmandu.

    Google Scholar 

  • Englehart, P. J., & Douglas, A. V. (2005). Changing behavior in the diurnal range of surface air temperatures over Mexico. Geophysical Research Letters, 32, L01701.

    Article  Google Scholar 

  • Erwin, K. L. (2009). Wetlands and global climate change: the role of wetland restoration in a changing climate. Wetland Ecology and Management, 17, 71–84.

    Article  Google Scholar 

  • Fei, L., Shuwen, Z., Kun, B., Jiuchun, Y., Qing, W., & Li**, C. (2015). The relationships between land use change and demographic dynamics in western Jilin province. Journal of Geographical Science, 25(5), 617–636.

    Article  Google Scholar 

  • Funkenberg, T., Binh, T. T., Moder, F., & Dech, S. (2014). The Ha Tien Plain: wetland monitoring using remote sensing. International Journal of Remote Sensing, 35(8), 2893–2909.

    Article  Google Scholar 

  • Gallant, A. L. (2015). The challenges of remote monitoring of wetlands. Remote Sensing, 7, 10938–10950.

    Article  Google Scholar 

  • Gao, J. (1998). A hybrid method towards accurate map** of mangroves in a marginal habitat from SPOT multispectral data. International Journal of Remote Sensing, 19(10), 1887–1899.

    Article  Google Scholar 

  • Gardner, R. C., Barchiesi, S., Beltrame, C., Finlayson, C. M., Galewski, T., Harrison, I., Paganini, M., Perennou, C., Pritchard, D. E., Rosenqvist, A., & Walpole, M. (2015). State of the world’s wetlands and their services to people: a compilation of recent analyses. Gland, Switzerland: Ramsar Briefing Note no. 7, Ramsar Convention Secretariat.

    Google Scholar 

  • Ghobadi, Y., Pradhan, B., Shafri, H. Z. M., Ahmad, N. B., & Kabiri, K. (2015). Spatio-temporal remotely sensed data for analysis of the shrinkage and shifting in the Al Hawizeh wetland. Environmental Monitoring and Assessment, 187, 41–56.

    Article  Google Scholar 

  • Gong, P., Niu, Z., **ao, C., et al. (2010). China’s wetland change (1990-2000) determined by remote sensing. Science China Earth Sciences, 53(7), 1036–1042.

    Article  Google Scholar 

  • Green, E. P., Clark, C. D., Mumby, P. J., Edwards, A. J., & Ellis, A. (1998). Remote sensing techniques for mangrove map**. International Journal of Remote Sensing, 19(5), 935–956.

    Article  Google Scholar 

  • Hartter, J., & Southworth, J. (2009). Dwindling resources and fragmentation of landscapes around parks: wetlands and forest patches around Kibale National Park, Uganda. Landscape Ecology, 24, 643–656.

    Article  Google Scholar 

  • Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: effect on plant growth and development. Weather and Climate Extreme, 10, 4–10.

    Article  Google Scholar 

  • Hazarika, N., Das, A. K., & Borah, S. B. (2015). Assessing land-use changes driven by river dynamics in chronically flood affected Upper Brahmaputra plains, India, using GIS-RS techniques. The Egyptian Journal of Remote Sensing and Space Science, 18(1), 107–118.

    Article  Google Scholar 

  • Hu, S., Niu, Z., Chen, Y., Li, L., & Zhang, H. (2017). Global wetlands: potential distribution, wetland loss, and status. Science of the Total Environment, 586, 319–327. https://doi.org/10.1016/j.scitotenv.2017.02.001.

    Article  CAS  Google Scholar 

  • IUCN. (1998). An inventory of Nepal’s Tarai Wetlands. Kathmandu: IUCN Nepal.

    Google Scholar 

  • Junk, W. J., An, S., Finlayson, C. M., Gopal, B., Kvet, J., Mitchell, S. A., Mitsch, W. J., & Robarts, R. D. (2013). Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquatic Sciences, 75, 151–167.

    Article  CAS  Google Scholar 

  • Kafle, G. (2005). Avifaunal survey and vegetation analysis focusing on threatened and near-threatened species on Ghodaghodi Lake of Nepal. Bedford: A Report Submitted to Oriental Bird Club (OBC).

    Google Scholar 

  • Kafle, G., & Savillo, I. T. (2009). Present status of Ramsar sites in Nepal. International Journal of Biodiversity and Conservation, 1(5), 146–150.

    Google Scholar 

  • Karki, R., Hassan, S. U., Schickhoff, U., Scholten, T., & Bohner, J. (2017). Rising precipitation extremes across Nepal. Climate, 5(1). https://doi.org/10.3390/cli5010004.

    Article  Google Scholar 

  • Karki, S., Thandar, A. M., Uddin, K., Tun, S., Aye, W. M., Aryal, K., Kandel, P., & Chettri, N. (2018). Impact of land use land cover change on ecosystem services: a comparative analysis on observed data and people perception in Inle Lake, Myanmar. Environmental System Research, 7, 25. https://doi.org/10.1186/s40068-018-0128-7.

    Article  Google Scholar 

  • Karl, B., Karoly, D. J., & Arblaster, J. M. (2004). Diurnal temperature range as an index of global climate change during the twentieth century. Geophysical Research Letters, 31, L13217.

    Article  Google Scholar 

  • Kayranli, B., Scholz, M., Mustafa, A., & Hedmark, A. (2010). Carbon storage and fluxes within freshwater wetlands: a critical review. Wetlands, 30, 111–124.

    Article  Google Scholar 

  • Khanal, S. (2009). Change assessment of forest cover in Ghodaghodi Lake area in Kailali district of Nepal. Banko Jankari, 19(2), 15–19.

    Article  Google Scholar 

  • Lamsal, P., Pant, K. P., Kumar, L., & Atreya, K. (2014). Diversity, uses, and threats in the Ghodaghodi Lake Complex, a Ramsar site in western lowland Nepal. ISRN Biodiversity, 680102, 12.

    Google Scholar 

  • Lamsal, P., Atreya, K., Pant, K. P., & Kumar, L. (2015a). An analysis of willingness to pay for community based conservation activities at the Ghodaghodi Lake Complex, Nepal. International Journal of Biodiversity Science, Ecosystem Services & Management, 11, 341–348.

    Article  Google Scholar 

  • Lamsal, P., Pant, K. P., Kumar, L., & Atreya, K. (2015b). Sustainable livelihood through conservation of wetland resources: a case of economic benefits from Ghodaghodi Lake, western Nepal. Ecology and Society, 20(1), 10.

    Article  Google Scholar 

  • Lamsal, P., Atreya, K., Pant, K. P., & Kumar, L. (2016). Tourism and wetland conservation: application of travel cost and willingness to pay an entry fee at Ghodaghodi Lake Complex, Nepal. Natural Resources Forum, 40, 51–61.

    Article  Google Scholar 

  • Lamsal P., Atreya K., Pant K.P., & Kumar L. (2017) People’s Dependency on Wetlands: South Asia Perspective with Emphasis on Nepal. In: Prusty B., Chandra R., Azeez P. (eds) Wetland Science. Springer, New Delhi

  • Lopez-Maldonado, Y., & Berkes, F. (2017). Restoring the environment, revitalizing the culture: cenote conservation in Yucatan, Mexico. Ecology and Society, 22(4), 7.

    Article  Google Scholar 

  • Mabwoga, S. O., & Thukral, A. K. (2014). Characterization of change in the Harike wetland, a Ramsar site in India, using Landsat satellite data. SpringerPlus, 3, 576. https://doi.org/10.1186/2193-1801-3-576.

    Article  Google Scholar 

  • Mitsch, W. J., Bernal, B., Nahlik, A. M., Mander, U., Zhang, L., Anderson, C. J., Jorgensen, S. E., & Brix, H. (2013). Wetlands, carbon, and climate change. Landscape Ecology, 28, 583–597.

    Article  Google Scholar 

  • MoFE. (2018). National Ramsar Strategy and Action Plan, Nepal (2018-2024). Ministry of Forests and Environment. Kathmandu, Nepal: Singha Durbar.

    Google Scholar 

  • MoPE. (2017). National Population Repot. Ministry of Population and Environment (p. 274). Kathmandu: Singha Durbar.

    Google Scholar 

  • Munyati, C. (2000). Wetland change detection on the Kafue Flats, Zambia, by classification of a multitemporal remote sensing image dataset. International Journal of Remote Sensing, 21(9), 1787–1806.

    Article  Google Scholar 

  • Ozesmi, S. L., & Bauer, M. E. (2002). Satellite remote sensing of wetlands. Wetland Ecology and Management, 10, 381–402.

    Article  Google Scholar 

  • Papastergiadou, E., Kagalou, I., Stefanidis, K., Retalis, A., & Leonardos, I. (2010). Effects of anthropogenic influence on the trophic state, land uses and aquatic vegetation in a shallow Mediterranean lake: implication for restoration. Water Resources Management, 24, 415–435.

    Article  Google Scholar 

  • Perugini, L., Caporaso, L., Marconi, S., Cescatti, A., Quesada, B., de Noblet-Ducoudre, N., House, J. I., & Arneth, A. (2017). Biophysical effects on temperature and precipitation due to land cover change. Environmental Research Letters, 12, 053002.

    Article  Google Scholar 

  • Prashar, P. & Shah, S. (2016). Impact of fertilizers and pesticides on soil microflora in agriculture. In: E. Lichtfouse (ed.), Sustainable agriculture reviews, Vol 19, Springer, Cham. 331-361, https://doi.org/10.1007/978-3-319-26777-7_8

    Chapter  Google Scholar 

  • Prigent, C., Papa, F., Aires, F., Jimenez, C., Rossow, W. B., & Matthews, E. (2012). Changes in land surfaces water dynamics since the 1990s and relation to population pressure. Geophysical Research Letters, 39, L08403.

    Article  Google Scholar 

  • Rahel, F. J., & Olden, J. D. (2008). Assessing the effects of climate change on aquatic invasive species. Conservation Biology, 22(3), 521–533.

    Article  Google Scholar 

  • Rashford, B. S., Adams, R. M., Wu, J., Voldseth, R. A., Guntenspergen, G. R., Werner, B., & Johnson, W. C. (2014). Impacts of climate change on land use and wetland productivity in the Prairie Pothole Region of North America. Regional Environmental Change, 16, 515–526.

    Article  Google Scholar 

  • Reis, V., Hermoso, V., Hamilton, S. K., Ward, D., Fluet-Chouinard, E., Lehner, B., & Linke, S. (2017). A global assessment of inland wetland conservation status. BioScience, 67(6), 523–533.

    Article  Google Scholar 

  • Rimal, B., Baral, H., Stork, N. E., Paudyal, K., & Rijal, S. (2015). Growing city and rapid land use transition: assessing multiple hazards and risks in the Pokhara Valley, Nepal. Land, 4, 957–978.

    Article  Google Scholar 

  • Romshoo, S. A., & Rashid, I. (2014). Assessing the impacts of changing land cover and climate on Hokersar wetland in Indian Himalayas. Arabian Journal of Geosciences, 7(1), 143–160.

    Article  Google Scholar 

  • Ruan, R., Zhang, Y., & Zhou, Y. (2008). Change detection of wetland in Hongze Lake using a time series of remotely sensed imagery. The international archives of the photogrammetry, remote sensing and spatial information sciences, Vol. XXXVII, Part B7. Bei**g: 1545–1548.

  • Sah, J. P., & Heinen, J. T. (2001). Wetland resource use and conservation attitudes among indigenous and migrant peoples in Ghodaghodi Lake area, Nepal. Environmental Conservation, 28(4), 345–356.

    Article  Google Scholar 

  • Shrestha, R. K. (2010). Fertilizer policy development in Nepal. The Journal of Agriculture and Environment, 11, 126–137.

    Article  Google Scholar 

  • Shrestha, A. B., & Joshi, S. P. (2009). Snow cover and glacier change study in Nepalese Himalaya using remote sensing and geographic information system. Journal of Hydrology and Meteorology, 6(1), 26–36.

    Article  Google Scholar 

  • Shrestha, A. B., Bajracharya, S. R., Sharma, A. R., Duo, C., & Kulkarni, A. (2016). Observed trends and changes in daily temperature and precipitation extremes over the Koshi river basin 1975-2010. International Journal of Climatology, 37(2), 1066–1083.

    Article  Google Scholar 

  • Sinha, C. P. (2011). Climate change and its impacts on the wetlands of North Bihar, India. Lakes & Reservoirs: Research and Management, 16, 109–111.

    Article  Google Scholar 

  • Sinha, P., Kumar, L., Drielsma, M., & Barrett, T. (2014). Time-series effective habitat area (EHA) modeling using cost-benefit raster based technique. Ecological Informatics, 19, 16–25.

    Article  Google Scholar 

  • Song, C., Woodcock, C. E., Seto, K. C., Lenny, M. P., & Macomber, S. A. (2001). Classification and change detection using Landsat TM data: when and how to correct atmospheric effects? Remote Sensing of Environment, 75(2), 230–244.

    Article  Google Scholar 

  • Sun, C., Zhen, L., & Miah, G. (2017). Comparison of ecosystem services provided by China’s Poyang Lake wetland and Bangladesh’s Tanguar Haor wetland. Ecosystem Services, 26, 411–421.

    Article  Google Scholar 

  • Thapa, R. B., & Murayama, Y. (2009). Examining spatiotemporal urbanization patterns in Kathmandu Valley, Nepal: remote sensing and spatial metrics approaches. Remote Sensing, 1(3), 534–556.

    Article  Google Scholar 

  • Thapa, L. B., Thapa, H., & Magar, B. G. (2015). Perceptions, trends and impacts of climate change in Kailali district, far west Nepal. International Journal of Environment, 4(4), 62–76.

    Article  Google Scholar 

  • van Asselen, S., Verburg, P. H., Vermaat, J. E., & Janse, J. H. (2013). Drivers of wetland conversion: a global meta-analysis. PLoS ONE, 8(11), e81292.

    Article  CAS  Google Scholar 

  • Wali, A., Alvira, D., Tallman, P. S., Ravikumar, A., & Macedo, M. O. (2017). A new approach to conservation: using community empowerment for sustainable well-being. Ecology and Society, 22(4), 6.

    Article  Google Scholar 

  • Werner, B. A., Johnson, W. C., & Guntenspergen, G. R. (2013). Evidence for 20th century climate warming and wetland drying in the North American Prairie Pothole Region. Ecology and Evolution, 3(10), 3471–3482.

    Google Scholar 

  • Whitehead, P. G., Wilby, R. L., Battarbee, R. W., Kernan, M., & Wade, A. J. (2009). A review of the potential impacts of climate change on surface water quality. Hydrological Sciences Journal, 54(1), 101–123.

    Article  Google Scholar 

  • Woodward, G., Perkin, D. M., & Brown, L. E. (2010). Climate change and freshwater ecosystems: impacts across multiple level of organizations. Philosophical Transactions of the Royal Society B, 365, 2093–2106.

    Article  Google Scholar 

  • Wu, G., Gao, Y., Wang, Y., Wang, Y., & Xu, D. (2015). Landuse/landcover changes and their driving forces around wetlands in Shangri-La County, Yunnan Province, China. International Journal Sustainable Development and World Ecology, 22(2), 110–116.

    Article  Google Scholar 

  • **e, Z., Liu, J., Ma, Z., Duan, X., & Cui, Y. (2012). Effect of surrounding land use change on the wetland landscape pattern of a natural protected area in Tian**, China. International Journal of Sustainable Development and World Ecology, 19(1), 16–24.

    Article  Google Scholar 

  • Zacharia, M., Elias, A., Jeremiah, K., Simon, M., & Olang, L. O. (2013). Assessment of land cover changes in Lake Olbolosat Region of the Central Kenyan Highlands using Landsat satellite imagery aided by indigenous knowledge. Journal of Biodiversity Management & Forestry, 2, 2.

    Article  Google Scholar 

  • Zhao, Z., Zhang, Y., Liu, L., Liu, F., & Zhang, H. (2015). Recent changes in wetlands on the Tibetan Plateau: a review. Journal Geographical Sciences, 25(7), 879–896.

    Article  Google Scholar 

  • Zhu, J., Sun, G., Li, W., Zhang, Y., Miao, G., Noormets, A., McNulty, S. G., King, J. S., Kumar, M., & Wang, X. (2017). Modeling the potential impacts of climate change on the water table level of selected forested wetlands in the southeastern United States. Hydrology and Earth System Science, 21, 6289–6305.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Lamsal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamsal, P., Atreya, K., Ghosh, M.K. et al. Effects of population, land cover change, and climatic variability on wetland resource degradation in a Ramsar listed Ghodaghodi Lake Complex, Nepal. Environ Monit Assess 191, 415 (2019). https://doi.org/10.1007/s10661-019-7514-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7514-0

Keywords

Navigation