Log in

Anaerobic pyrite oxidation in a naturally occurring pyrite-rich sediment under preload surcharge

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Pyrite undergoes oxidation when exposed to aqueous oxygen to produce acidic leachate with high concentrations of H+, SO42−, and Fe3+. The oxidation mechanism is currently ascribed to contact between the mineral and aqueous oxygen. Consequently, management of acidic leachate from acid sulfate soils and acid mine drainage is focused on the prevention of contact between the sediment and aqueous oxygen through the surface. Intriguing though is the fact that in aquatic sediments, redox processes occur in sequence with the oxidizing agents. Among the common oxidants in aquatic sediments are O2, \( {\mathrm{NO}}_3^{-} \), Mn, and Fe, in the order of efficiency. Consequently, following the depletion of oxygen in pyrite-rich sediment, it would be expected that \( {\mathrm{NO}}_3^{-} \), followed by Mn and then Fe, would continue the oxidation process. However, evidence of anaerobic pyrite oxidation in a naturally occurring pyrite-rich sediment is limited. Few studies have investigated the process in aquatic systems but mostly in laboratory experimental set ups. In this study, pyrite oxidation in a naturally occurring pyrite-rich sediment was investigated. A section of the sediment was covered with surface surcharge, in the form of compacted fill. The section of the sediment outside the surcharged area was preserved and used as control experiment. Solid phase soil and porewater samples were subjected to elemental, mineralogical, and microbial analyses. The results show excess accumulation of sulfate and sulfide in the anoxic zones of the original sediment and beneath the surcharge, accompanied by the disappearance of \( {\mathrm{NO}}_3^{-} \), Mn, and Fe in the anoxic zones, indicating electron transfers between donors and acceptors, with pyrite as the most likely electron donor. The study outcome poses a significant challenge to the use of surface cover for the management of acidic leachate from pyrite oxidation, particularly, in areas rich in \( {\mathrm{NO}}_3^{-} \), MnO2, or Fe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abicht, H. K., Mancini, S., Karnachuk, O. V., & Solioz, M. (2011). Genome sequence of Desulfosporosinus sp. OT, an acidophilic sulfate-reducing bacterium from copper mining waste in Norilsk, Northern Siberia. Journal of Bacteriology, 193, 6104–6105.

    Article  CAS  Google Scholar 

  • Aller, R. C., & Rude, P. D. (1988). Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments. Geochimica et Cosmochimic Acta, 52, 751–765.

    Article  CAS  Google Scholar 

  • Appelo, C. A. J., & Postma, D. (2005). Geochemistry, groundwater and pollution. The Netherlands: A. A. Balkema Publishers.

    Book  Google Scholar 

  • Berner, R. A. (1970). Sedimentary pyrite formation. American Journal of Science, 268, 1–23.

    Article  CAS  Google Scholar 

  • Bronswijk, J. J. B., Nugroho, K., Aribawa, I. B., Groenenberg, J. E., & Ritsema, C. J. (1993). Modeling of oxygen transport and pyrite oxidation in acid sulfate soils. J. Environmental Quality, 22, 544–554.

    Article  CAS  Google Scholar 

  • Cook, F. J., Dobos, S. K., Carlin, G. D., & Millar, G. E. (2004). Oxidation rate of pyrite in acid sulfate soils: in situ measurements and modelling. Australian Journal of Soil Research, 42, 499–507.

    Article  CAS  Google Scholar 

  • Dent, D. (1986). Acid sulfate soils: a baseline for research and development. In Wageningen. The Netherlands: International Institute for Land Reclamation and Inprovement (ILRI).

    Google Scholar 

  • Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R., Cullen, D., & Dauphin, P. (1979). Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica et Cosmochimica Acta, 43, 1075–1090.

    Article  CAS  Google Scholar 

  • Garcia-Gil, L. J., & Golterman, H. L. (1993). Kinetics of FeS-mediated denitrification in sediments from the Camargue (Rhode delta, Southern France). FEMS Microbiology Ecology, 13, 85–92.

    Article  CAS  Google Scholar 

  • Garrels, R. M. & Thompson, M. E. 1960. Oxidation of pyrite by iron sulfate solutions. American journal of science, Bradley Volume, Vol. 258-A, 57–67.

  • Goker, M., Teshima, H., Lapidus, A., Lucas, S., et al. (2011). Complete genome sequence of the acetate-degrading sulfate reducer Desulfobacca acetoxidans type strain (ASRB2T). Standards in Genomic Sciences, 4, 393–401.

    Article  Google Scholar 

  • Hengstmann, U., Chin, K., Janssen, P. H., & Liesack, W. (1999). Comparative phylogenetic assignment of environmental sequences of genes encoding 16S rRNA and numerically abundant culturable bacteria from an anoxic rice paddy soil. Applied and Environmental Microbiology, 65, 5050–5058.

    CAS  Google Scholar 

  • Hill, G. T., Mitkowski, N. A., Aldrich-Wolfe, L., Emele, L. R., Jurkonie, D. D., Ficke, A., Maldonado-Ramirez, S., Lynch, S. T., & Nelson, E. B. (2000). Methods for assessing the composition and diversity of soil microbial communities. Applied Soil Ecology, 15, 25–36.

    Article  Google Scholar 

  • Holmer, M., & Storkholm, P. (2001). Sulfate reduction and sulfur cycling in lake sediments: a review. Freshwater Biology - Special Review, 46, 431–451.

    Article  CAS  Google Scholar 

  • Jorgensen, B. B. (1977). The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnology and Oceanography, 22, 814–832.

    Article  Google Scholar 

  • Jorgensen, B. B., & Bak, F. (1991). Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, Denmark). Applied and Environmental Microbiology, 57, 847–856.

    CAS  Google Scholar 

  • Jorgensen, C. J., Jacobsen, O. S., Elberling, B., & Aamand, J. (2009). Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment. Environmental Science & Technology, 43, 4851–4857.

    Article  Google Scholar 

  • Karikari-Yeboah, O., & Addai-Mensah, J. (2017). Assessing the impact of preload on pyrite-rich sediment and groundwater quality. Environmental Monitoring and Assessment, 189, 1–19.

    Article  CAS  Google Scholar 

  • Karikari-Yeboah, O., Skinner, W., & Addai-Mensah, J. (2018). The impact of preload on the mobilisation of multivalent trace metals in pyrite-rich sediment. Environmental Monitoring and Assessment, 190, 1–14.

    Article  CAS  Google Scholar 

  • Kosaka, T., Kato, S., Shimoyama, T., Ishii, S., Abe, T., & Watanabe, K. (2008). The genome of Pelotomaculum thermopropionicum reveals niche-associated evolution in anaerobic microbiota. Genome Research, 18, 442–448.

    Article  CAS  Google Scholar 

  • Luther, G. W. (1987). Pyrite oxidation and reduction: Molecular orbital theory considerations. Geochimica et Cosmochimic Acta, 51, 3193–3199.

    Article  CAS  Google Scholar 

  • Pester, M., Bittner, N., Deevong, P., Wagner, M., & Loy, A. (2010). A ‘rare biosphere’ microorganism contributes to sulfate reduction in a peatland. The ISME Journal, 4, 1591–1602.

    Article  CAS  Google Scholar 

  • Sanchez-Andrea, I., Knittel, K., Amann, R., Amils, R., & Sanz, J. L. (2012). Quantification of Tinto River sediment microbial communities: importance of sulfate-reducing bacteria and their role in attenuating acid mine drainage. Journal Applied and Environmental Microbiology, 78, 4638–4645.

    Article  CAS  Google Scholar 

  • Schippers, A., & Jorgensen, B. B. (2001). Oxidation of pyrite and iron sulfide by manganese dioxide in marine sediments. Geochimica et Cosmochim. Acta, 65, 915–922.

    Article  CAS  Google Scholar 

  • Sieber, J. R., Sims, D. R., Han, C., Kim, E., Lykidis, A., Lapidus, A. L., Mcdonald, E., Rohlin, L., Culley, D. E., Gunsalus, R., & Mclnerney, M. J. (2010). The genome of Syntrophomonas wolfei: new insights into syntrophic metabolism and biohydrogen production. Environmental Microbiology, 12, 2289–2301.

    CAS  Google Scholar 

  • Singer, P. C., & Stumm, W. (1970). Acidic mine drainage: the rate-determining step. Science, New Series, 167, 1121–1123.

    CAS  Google Scholar 

  • Szogi, A. A., Hunt, P. G., Sadler, E. J., & Evans, D. E. (2004). Characterization of oxidation-reduction processes in constructed wetlands for swine wastewater treatment. Applied Engineering in Agriculture, 20, 189–200.

    Article  Google Scholar 

  • Walpole, R. E., & Myers, R. H. (1989). Probability and statistics for engineers and scientists. Boston: Boston Pearson Education.

    Google Scholar 

  • Wheel, K. G. & Feasby, G. (1991). Innovative decommission technologies via Canada’s MEND program. the 12th Nat. Conf., Hazardous Mater. Control/Superfund ‘91, Hazardous Mater Control Res. Inst., 23–28.

  • Wiersma, C. L., & Rimstidt, J. D. (1984). Rates of reaction of pyrite and marcasite with ferric iron at pH 2. Geochimica et Cosmochimic Acta, 48, 85–92.

    Article  CAS  Google Scholar 

  • Williamson, M. A., & Rimstidt, J. D. (1994). The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation. Geochimica et Cosmochimic Acta, 58, 5443–5454.

    Article  CAS  Google Scholar 

  • Yanful, E. K. (1993). Oxygen diffusion through soil covers on sulphidic mine tailings. Journal of Geotechnical Engineering, 119, 1207–1228.

    Article  Google Scholar 

Download references

Acknowledgements

This research was founded by Maiden Geotechnics and Australian Commonwealth Scholarship awarded by the University of South Australia to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Karikari-Yeboah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

O. Karikari-Yeboah formally of University of South Australia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karikari-Yeboah, O., Skinner, W. & Addai-Mensah, J. Anaerobic pyrite oxidation in a naturally occurring pyrite-rich sediment under preload surcharge. Environ Monit Assess 191, 216 (2019). https://doi.org/10.1007/s10661-019-7289-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7289-3

Keywords

Navigation