Log in

Seagrass litter decomposition: an additional nutrient source to shallow coastal waters

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Seagrass ecosystems are vital for its regulatory services yet, highly threatened by degradation due to human pressures. Decomposition of two tropical seagrass species (Cymodocea serrulata and Cymodocea rotundata) was studied and compared, to understand their potential in generating additional nutrients to coastal waters. Release of carbon, nitrogen and phosphorus during the decomposition process of seagrass wracks was estimated in bacteria-active (non-poisoned) and bacteria-inhibited (poisoned) conditions from shore-washed fresh seagrass, sampled from Palk Bay, India. Incubation experiments for 25 days indicated a near three times higher concentration of dissolved organic carbon (DOC) in bacteria-inhibited flasks compared to bacteria-active conditions for both species. The maximum leaching rates of DOC, TDN and TDP were found to be 294, 65.1 and 11.2 μM/g dry wt/day, respectively. Further, higher release of dissolved inorganic nitrogen (DIN) (> 1.3 times) was documented from the bacteria-active flask, highlighting the significance of microbial process in generating bio-available nutrients from decaying seagrass. Faster decomposition (0.014 ± 0.004 day−1) in the initial stages (up to 8 days) compared to the later stages (0.005 ± 0.001 day−1) indicated a rapid loss of biomass carbon during the initial leaching process and its relative importance in the decomposition pathway. The decomposition rate is best described by a single-stage exponential decay model with a half-life of 41 days. It is estimated that the total seagrass litter available along the Palk Bay coast is about ~ 0.3 Gg with high potential of additional nitrogen (0.9 ± 0.5 Mg) and phosphorus (0.3 ± 0.1 Mg) supply to the adjacent coastal waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barreiro, F., Gómez, M., Lastra, M., López, J., & de la Huz, R. (2011). Annual cycle of wrack supply to sandy beaches: effect of the physical environment. MEPS, 433, 65–74. https://doi.org/10.3354/meps09130.

    Article  Google Scholar 

  • Barron, C., Apostolaki, E. T., & Duarte, C. M. (2014). Dissolved organic carbon fluxes by seagrass meadows and macroalgal beds. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2014.00042.

  • Bar-Zeev, E., Berman-Frank, I., Cirshevitz, O., & Berman, T. (2012). Revised paradigm of aquatic biofilm formation facilitated by microgel transparent exopolymer particles. PNAS, 109, 9119–9124.

    Article  CAS  Google Scholar 

  • Bharathi, K., Subhashini, P., Raja, S., Ranith, R., Vanitha, K., & Thangaradjou, T. (2015). Spatial variability in distribution of seagrasses along the Tamilnadu coast. International Journal of Current Research, 6, 8997–9005.

    Google Scholar 

  • Davis, S. E., III, Corronado-Molina, C., Childers, D. L., & Day, J. W., Jr. (2003). Temporally dependent C, N, and P dynamics associated with the decay of Rhizophora mangle L. leaf litter in oligotrophic mangrove wetlands of the Southern Everglades. Aquatic Botany, 75, 199–215.

    Article  CAS  Google Scholar 

  • de Boer, W. F. (2000). Biomass dynamics of seagrasses and the role of mangrove and seagrass vegetation as different nutrient sources for an intertidal ecosystem in Mozambique. Aquatic Botany, 66, 225–239.

    Article  Google Scholar 

  • Delgado, M., Carlos, M., Cintra-Buenrostro, E., & Fierro-Cabo, A. (2017). Decomposition and nitrogen dynamics of turtle grass (Thalassia testudinum) in a subtropical estuarine system. Wetlands Ecology and Management, 1–15.

  • Duarte, C. M. (1990). Seagrass nutrient content. Marine Ecology Progress Series, 6, 201–207.

    Article  Google Scholar 

  • Duarte, C. M., Middelburg, J. J., & Caraco, N. (2005). Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences, 2, 1–8.

    Article  CAS  Google Scholar 

  • Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I., & Marbà, N. (2013). The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change, 3, 961–968.

    Article  CAS  Google Scholar 

  • Erftemeijer, P. L. A., & Lewis, R. R. R. (2006). Environmental impacts of dredging on seagrasses: A review. Marine Pollution Bulletin, 52, 1553–1572.

    Article  CAS  Google Scholar 

  • Ferguson, A. J. P., Gruber, R., Potts, J., Wright, A., Welsh, D. T., & Scanes, P. (2017). Oxygen and carbon metabolism of Zostera muelleri across a depth gradient – Implications for resilience and blue carbon. Estuarine, Coastal and Shelf Science, 187, 216–230. https://doi.org/10.1016/j.ecss.2017.01.005.

    Article  CAS  Google Scholar 

  • Fourqurean, J. W., & Schrlau, J. E. (2003). Changes in nutrient content and stable isotope ratios of C and N during decomposition of seagrasses and mangrove leaves along a nutrient availability gradient in Florida bay, USA. Chemistry and Ecology, 19, 373–390.

    Article  CAS  Google Scholar 

  • Fourqurean, J. W., Zieman, J. C., & Powell, G. V. N. (1992). Phosphorus limitation of primary production in Florida bay: Evidence from the C:N:P ratios of the dominant seagrass Thalassia testudinum. Limnology and Oceanography, 37, 162–171.

    Article  CAS  Google Scholar 

  • Ganguly, D., Singh, G., Ramachandran, P., Selvam, A. P., Banerjee, K., & Ramachandran, R. (2017). Seagrass metabolism and carbon dynamics in a tropical coastal embayment. Ambio, 46, 667–679.

    Article  CAS  Google Scholar 

  • Geevarghese, G. A., Akhil, B., Magesh, G., Krishnan, P., Purvaja, R., & Ramesh, R. (2017). A comprehensive geospatial assessment of seagrass distribution in India. Ocean and Coastal Management, 159, 16–25.

    Article  Google Scholar 

  • Ghosh, S., & Leff, L. G. (2013). Impacts of labile organic carbon concentration on organic and inorganic nitrogen utilization by a stream biofilm bacterial community. Applied and Environmental Microbiology, 79, 7130–7141.

    Article  CAS  Google Scholar 

  • Godshalk, G. L., & Wetzel, R. G. (1978). Decomposition of aquatic angiosperms. III. Zostera marina L. and a conceptual model of decomposition. Aquatic Botany, 5, 329–354.

    Article  CAS  Google Scholar 

  • Gokulakrishnan, R., & Ravikumar, S. (2016). Assessment of seagrass biomass and coastal landforms along Palk Strait. The Indian Journal of GeoMarine Sciences, 45, 1035–1041.

    Google Scholar 

  • González-Domínguez, B., Studer, M. S., Hagedorm, F., Niklaus, P. A., & Abiven, S. (2017). Leaching of soils during laboratory incubations does not affect soil organic carbon mineralisation but solubilisation. PLoS One, 12174–12725.

  • Govindasamy, C., & Arulpriya, M. (2011). Seasonal variation in seagrass biomass on northern Palk Bay, India. Biodiversity, 12, 223–231.

    Article  Google Scholar 

  • Grasshoff, K., Kremlimg, K., & Ehrhardt, M. (1999). Analysis by electrochemical methods; In: Methods of seawater analysis (pp. 159–226). Weinheim: Wiley VCH.

    Book  Google Scholar 

  • Holmer, M., & Olsen, A. B. (2002). Role of decomposition of mangrove and seagrass detritus in sediment carbon and nitrogen cycling in a tropical mangrove forest. Marine Ecology Progress Series, 230, 87–101.

    Article  Google Scholar 

  • Inamura, G. J., Thompson, R. S., Boehm, A. B., & Jay, J. A. (2011). Wrack promotes the persistence of fecal indicator bacteria in marine sands and seawater. FEMS Microbiology Ecology, 77, 40–49.

  • Jagtap, T. G., Komarpant, D. S., & Rodrigues, R. S. (2003). Status of seagrass ecosystems of India. Wetlands, 23, 161–170.

    Article  Google Scholar 

  • Jordà, G., Marbà, N., & Duarte, C. M. (2012). Mediterranean seagrass vulnerable to regional climate warming. Nature Climate Change, 2, 821–824.

    Article  Google Scholar 

  • Jordan, T. E., Whigham, D. F., & Correllthe, D. L. (1989). Role of litter in nutrient cycling in a brackish tidal marsh ecological Society of America. Ecology, 70, 1906–1915.

    Article  Google Scholar 

  • Kannan, L., Thangaradjou, T., & Anantharaman, P. (1999). Status of seagrasses of India. Seaweed Research and Utilization, 21, 25–33.

    Google Scholar 

  • Kennedy, H., Beggins, J., Duarte, C. M., Fourqurean, J. W., Holmer, M., Marba, N., & Middelburg, J. J. (2010). Seagrass sediments as a global carbon sink: Isotopic constraints. Global Biogeochem Cycles, 24, 38–48.

    Article  Google Scholar 

  • Kumaraguru, A. K., Jayakumar, K., & Ramakritinan, C. M. (2003). Coral bleaching in the Palk Bay, southeast coast of India. Current Science, 85, 1787–1792.

    CAS  Google Scholar 

  • Loría-Naranjo, M., Sibaja-Cordero, J. A., & Cortés, J. (2018). Mangrove leaf litter decomposition in a seasonal tropical environment. Journal of Coastal Research. https://doi.org/10.2112/JCOASTRES-D-17-00095.1.

  • Lu, X. Q., Maie, N., Hanna, J. V., Childers, D., & Jaffé, R. (2003). Molecular characterization of dissolved organic matter in freshwater wetlands of the Florida Everglades. Water Research, 37, 2599–2606.

    Article  CAS  Google Scholar 

  • Macreadie, P. I., Trevathan-Tackett, S. M., Baldock, J. A., & Kelleway, J. J. (2017). Converting beach-cast seagrass wrack into biochar: A climate-friendly solution to a coastal problem. Science of the Total Environment, 574, 90–94.

    Article  CAS  Google Scholar 

  • Maie, M., Jaffe, R., Miyoshi, T., & Childers, D. L. (2006). Quantitative and qualitative aspects of dissolved organic carbon leached from senescent plants in an oligotrophic wetland. Biogeochemistry, 78, 285–314.

    Article  CAS  Google Scholar 

  • Manikandan, S., Ganesapandian, S., Singh, M., & Kumaraguru, A. K. (2011). Seagrass diversity and associated Flora and Fauna in the coral reef ecosystem of the Gulf of Mannar, Southeast Coast of India. Research Journal of Environmental and Earth Sciences, 3, 321–326.

    Google Scholar 

  • Manikandan, B., Ravindran, J., Shrinivaasu, S., Marimuthu, N., & Paramasivam, K. (2014). Community structure and coral status across reef fishing intensity gradients in Palk Bay, southeast coast of India. Environmental Monitoring and Assessment, 186, 5989–6002.

    Article  CAS  Google Scholar 

  • Marbà, N., Dıaz-Almela, E., & Duarte, C. M. (2014). Mediterranean seagrass (Posidonia oceanica) loss between 1842 and 2009. Biological Conservation, 176, 183–190. 

  • Mastný, J., Kaštovská, E., Bárta, J., Chroňáková, A., Borovec, J., Šantrůčková, H., Urbanová, Z., Edwards, R. K., & Picek, T. (2018). Quality of DOC produced during litter decomposition of peatland plant dominants. Soil Biology and Biochemistry, 121, 221–230.

    Article  Google Scholar 

  • McGuire, K. L., & Treseder, K. K. (2010). Microbial communities and their relevance for ecosystem models: decomposition as a case study. Soil Biology and Biochemistry 42, 529–535.

    Article  CAS  Google Scholar 

  • Moran, P. A., & Hodson, R. (1989). Bacterial secondary producbon on vascular plant detritus: relationships to detntus composition and degradation rate. Applied and Environmental Microbiology, 55, 2178–2189.

    CAS  Google Scholar 

  • Nelson, J. L., & Zavaleta, E. S. (2012). Salt marsh as a coastal filter for the oceans: Changes in function with experimental increases in nitrogen loading and sea-level rise. PLoS One, 7, 1–14.

    Google Scholar 

  • Ochieng, C. A., & Erftemeijer, P. L. A. (1999). Accumulation of seagrass beach cast along the Kenyan coast: A quantitative assessment. Aquatic Botany, 65, 221–238.

    Article  Google Scholar 

  • Oldham, C., Lavery, P., McMahon, K., Pattiaratchi, C., & Chiffings, T. (2010). Seagrass wrack dynamics in Geographe Bay, Western Australia. Report to Department of Transport, Western Australian and Shire of Bussleton.

  • Opsahl, S., & Benner, R. (1993). Decomposition of senescent blades of the seagrass Halodule wrightii in a subtropical lagoon. Marine Ecology Progress Series, 94, 191–205.

    Article  Google Scholar 

  • Peduzzi, P., & Herndl, G. J. (1991). Decomposition and significance of seagrass leaf litter (Cymodocea nodosa) for microbial food web in coastal waters (gulf of Trieste, northern Adriatic Sea). Marine Ecology Progress Series, 71, 163–174.

    Article  Google Scholar 

  • Purvaja, R., Robin, R. S., Ganguly, D., Hariharan, G., Singh, G., Raghuraman, R., & Ramesh, R. (2018). Seagrass meadows as proxy for assessment of ecosystem health. Ocean and Coastal Management, 159, 34–45. https://doi.org/10.1016/j.ocecoaman.2017.11.026.

    Article  Google Scholar 

  • Rinkes, Z. L., Sinsabaugh, R. L., Moorhead Dary, L., Grandy, A. S., & Weintraub, M. N. (2013). Field and lab conditions alter microbial enzyme and biomass dynamics driving decomposition of the same leaf litter. Frontiers in Microbiology, 260.

  • Thangaradjou, T., Sridhar, R., Senthilkumar, S., & Kannan, L. (2008). Seagrass resources assessment in the Mandapam coast of the Gulf of Mannar biosphere reserve, India. Applied Ecology and Environmental Research, 6, 139–146.

    Article  Google Scholar 

  • Valiela, L., Teal, J. M., Allen, S. D., Van Etten, R., Goehringer, D., & Volkmann, S. (1985). Decomposition in salt marsh ecosystems: The phases and major factors affecting disappearance of above-ground organic matter. Journal of Experimental Marine Biology and Ecology, 89, 29–54.

    Article  CAS  Google Scholar 

  • Viaroli, P., Bartoli, M., Giordani, G., Naldi, M., Orfanidis, S., & Zaldivar, J. M. (2008). Community shifts, alternative stable states, biogeochemical controls and feedbacks in eutrophic coastal lagoons: A brief overview. Aquatic Conservation: Marine and Freshwater Ecosystems, 18, S105–S117.

    Article  Google Scholar 

  • Wang, X. C., Litz, L., Chen, R. F., Huang, W., Feng, P., & Altabet, M. A. (2007). Release of dissolved organic matter during oxic and anoxic decomposition of salt marsh cordgrass. Marine Chemistry, 105, 309–321.

    Article  CAS  Google Scholar 

  • Wang, X., Chen, R. F., Cable, J. E., & Cherrier, J. (2014). Leaching and microbial degradation of dissolved organic matter from salt marsh plants and seagrasses. Aquatic Sciences, 76, 595–609.

    Article  Google Scholar 

  • Waycott, M., Duarte, C. M., Carruthers, T., Orth, R., Dennison, W. C., Olyarnik, S., Calladine, A., Fourqurean, J., Heck, K., Hughes, R., Kendrick, G., Kenworthy, W., Short, F., & Williams, S. (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 106, 12377–12381.

    Article  CAS  Google Scholar 

  • White, D. S., & Howes, B. L. (1994). Long-term 15N-nitrogen retention in the vegetated sediments of a New England salt marsh. Limnology and Oceanography, 39, 1878–1892.

    Article  Google Scholar 

  • Zhou, L. Y., Zhou, X. H., Shao, J. J. , Nie, Y. Y., He, Y. H., Jiang, L. L., Wu, Z. T., & Bai, S. H. (2016). Interactive effects of global change factors on soil respiration and its components: a meta-analysis. Global Change Biology. https://doi.org/10.1111/gcb.13253.

Download references

Acknowledgments

This study was undertaken as part of the in-house research study of NCSCM on “BECoCE” studies (IR12008).

Funding

This study was financially and technically supported by the Ministry of Environment, Forest and Climate Change, Government of India, and the World Bank under the India ICZM Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Purvaja.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, M.H.K., Ganguly, D., Paneerselvam, A. et al. Seagrass litter decomposition: an additional nutrient source to shallow coastal waters. Environ Monit Assess 191, 5 (2019). https://doi.org/10.1007/s10661-018-7127-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-7127-z

Keywords

Navigation