Log in

Temporal variation of phytoplankton growth and grazing loss in the west coast of Peninsular Malaysia

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Phytoplankton growth (μ) and grazing loss (g) rates were measured monthly by the Landry-Hassett dilution method over a 2-year period at both estuarine (Klang) and coastal water (Port Dickson) systems along the Straits of Malacca. Chlorophyll a (Chl a) concentration ranged from 0.20 to 4.47 μg L−1 at Klang except on two occasions when Chl a spiked above 10 μg L−1. In contrast, Chl a concentrations were relatively stable at Port Dickson (0.14 to 2.76 μg L−1). From the rate measurements, μ was higher (t = 2.01, df = 43, p < 0.05) at Klang (0.30 to 2.26 day−1) than at Port Dickson (0.18 to 1.66 day−1), but g was not significantly different (p > 0.80). g ranged from 0.30 to 1.50 and 0.21 to 1.51 day−1 at Klang and Port Dickson, respectively. In this study, grazing loss was coupled to phytoplankton growth, and the ratio of g/μ or grazing pressure which estimates the proportion of primary production grazed was 50 % at Klang and lower than at Port Dickson (68 %; t = 2.213, df = 36, p < 0.05). We found that the higher growth rates in a eutrophic system, i.e., Klang, were not matched by higher grazing loss, and this may have implications for the biogeochemical cycling in coastal waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alongi, D.M., Chong, V.C., Dixon, P., Sasekumar, A., & Tirendi, F. (2003). The influence of fish cage aquaculture on pelagic carbon flow and water chemistry in tidally dominated mangrove estuaries of Peninsular Malaysia. Marine Environmental Research, 55, 313–333.

    Article  CAS  Google Scholar 

  • Azam, F., Fenchel, T., Field, J.G., Gray, J.S., Meyer-Reil, L.A., & Thingstad, F. (1983). The ecological role of water-column microbes in the sea. Marine Ecology Progress Series, 10, 257–263.

    Article  Google Scholar 

  • Bong, C.W., & Lee, C.W. (2011). The contribution of heterotrophic nanoflagellate grazing towards bacterial mortality in tropical waters: comparing estuaries and coastal ecosystems. Marine and Freshwater Research, 62, 414–420.

    Article  CAS  Google Scholar 

  • Boyce, D.G., Lewis, M.R., & Worm, B. (2010). Global phytoplankton decline over the past century. Nature, 466, 591–596.

    Article  CAS  Google Scholar 

  • Calbet, A. (2001). Mesozooplankton grazing effect on primary production: a global comparative analysis in marine ecosystems. Limnology and Oceanography, 46, 1824–1830.

    Article  Google Scholar 

  • Calbet, A., & Landry, M.R. (2004). Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnology and Oceanography, 49(1), 51–57.

    Article  CAS  Google Scholar 

  • Chen, B., Landry, M.R., Huang, B., & Liu, H. (2012). Does warming enhance the effect of microzooplankton grazing on marine phytoplankton in the ocean? Limnology and Oceanography, 57(2), 519–526.

    Article  CAS  Google Scholar 

  • Cloern, J.E., Cole, B.E., Wong, R.L.J., & Alpine, A.E. (1985). Temporal dynamics of estuarine phytoplankton: a case study of San Francisco Bay. Hydrobiologia, 129, 153–176.

    Article  Google Scholar 

  • Cole, J.J. (1999). Aquatic microbiology for ecosystem scientists: new and recycled paradigms in ecological microbiology. Ecosystems, 2, 215–225.

    Article  Google Scholar 

  • del Giorgio, P.A., Cole, J.J., & Cimbleris, A. (1997). Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems. Nature, 385, 148–151.

    Article  Google Scholar 

  • Falkowski, P.G., Barber, R.T., & Smetacek, V. (1998). Biogeochemical controls and feedbacks on ocean primary production. Science, 281, 200.

    Article  CAS  Google Scholar 

  • Field, C.B., Behrenfeld, M.J., Randerson, J.T., & Falkowski, P.G. (1998). Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 281, 237–240.

    Article  CAS  Google Scholar 

  • Grasshoff, K., Kremling, K., & Ehrhardt, M. (1999). Methods of seawater analysis (3rd ed.). Weinheim: Wiley-VCH.

    Book  Google Scholar 

  • Gutiérrez-Rodríguez, A., Latasa, M., Mourre, B., & Laws, E.A. (2009). Coupling between phytoplankton growth and microzooplankton grazing in dilution experiments: potential artifacts. Marine Ecology Progress Series, 383, 1–9.

    Article  Google Scholar 

  • Hammer, Ø., Harper, D.A.T., & Ryan, P.D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1–9.

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change). (2007). Climate change: the physical science basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Irwin, A.J., & Oliver, M.J. (2009). Are ocean deserts getting larger? Geophysical Research Letters, 36, L18609.

    Article  Google Scholar 

  • Kirchman, D., Peterson, B., & Juers, D. (1984). Bacterial growth and tidal variation in bacterial abundance in the Great Sippewissett Salt Marsh. Marine Ecology Progress Series, 19, 247–259.

    Article  Google Scholar 

  • Kuipers, B.R., & Witte, H.J. (1999). Grazing impacts of microzooplankton on different size classes of algae in the North Sea in early spring and mid-summer. Marine Ecology Progress Series, 180, 93–104.

    Article  Google Scholar 

  • Landry, M.R. (2014). On database biases and hypothesis testing with dilution experiments: response to comment by Latasa. Limnology and Oceanography, 59(3), 1095–1096.

    Article  Google Scholar 

  • Landry, M.R., & Hassett, R.P. (1982). Estimating the grazing impact of marine micro-zooplankton. Marine Biology, 67, 283–288.

    Article  Google Scholar 

  • Landry, M.R., Haas, L.W., & Fagerness, V.L. (1984). Dynamics of microbial plankton communities: experiments in Kaneohe Bay, Hawaii. Marine Ecology Progress Series, 16, 127–133.

    Article  CAS  Google Scholar 

  • Lee, C.W., & Bong, C.W. (2008). Bacterial abundance and production and their relation to primary production in tropical coastal waters of Peninsular Malaysia. Marine & Freshwater Research, 59(1), 10–21.

    Article  CAS  Google Scholar 

  • Lee, C.W., & Bong, C.W. (2012). The relative importance of viral lysis and grazing towards bacterial mortality in tropical coastal waters of Peninsular Malaysia. Bulletin of Marine Science, 88(1), 1–14.

    Article  Google Scholar 

  • Lee, C.W., Bong, C.W., & Hii, Y.S. (2009). Temporal variation of bacterial respiration and growth efficiency in tropical coastal waters. Applied and Environmental Microbiology, 75(24), 7594–7601.

    Article  CAS  Google Scholar 

  • Lee, C.W., Lim, J.H., & Heng, P.L. (2013). Investigating the spatial distribution of phototrophic picoplankton in a tropical estuary. Environmental Monitoring and Assessment, 185, 9697–9704.

    Article  CAS  Google Scholar 

  • Liu, H., Suzuki, K., Nishioka, J., Sohrin, R., & Nakatsuka, T. (2009). Phytoplankton growth and microzooplankton grazing in the Sea of Okhotsk during late summer of 2006. Deep-Sea Research I, 56, 561–570.

    Article  CAS  Google Scholar 

  • Ma, L., Cao, W., Zhang, W., Lin, Y., Zheng, L., Yang, W., & Wang, Y. (2014). An ecological study on zooplankton in the northern Beibu Gulf V: the effects of microzooplankton grazing on phytoplankton in summer. Acta Ecologica Sinica, 34(3), 546–554.

    CAS  Google Scholar 

  • Mann, K.H. (1993). Physical oceanography, food chains, and fish stocks: a review. ICES Journal of Marine Science, 50, 105–119.

    Article  Google Scholar 

  • Moal, J., Martin-Jezequel, V., Harris, R.P., Samian, J.-F., & Poulet, S.A. (1987). Interspecific and intraspecific variability of the chemical composition of marine phytoplankton. Oceanologica Acta, 10, 339–346.

    CAS  Google Scholar 

  • Modigh, M., & Franzé, G. (2009). Changes in phytoplankton and microzooplankton populations during grazing experiments at a Mediterranean coastal site. Journal of Plankton Research, 31(8), 853–864.

    Article  CAS  Google Scholar 

  • Pagano, M., Champalbert, G., Aka, M., Kouassi, E., Arfi, R., Got, P., Troussellier, M., N’Dour, E.H., Corbin, D., & Bouvy, M. (2006). Herbivorous and microbial grazing pathways of metazooplankton in the Senegal River Estuary (West Africa). Estuarine, Coastal and Shelf Science, 67, 369–381.

    Article  Google Scholar 

  • Parsons, T.R., Maita, Y., & Lalli, C.M. (1984). A manual of chemical and biological methods for seawater analysis. Oxford: Pergamon Press.

    Google Scholar 

  • Paterson, H.L., Knott, B., Koslow, A.J., & Waite, A.M. (2008). The grazing impact of microzooplankton off south west Western Australia: as measured by the dilution technique. Journal of Plankton Research, 30, 379–392.

    Article  Google Scholar 

  • Pomeroy, L.R. (2001). Caught in the food web: complexity made simple? Scientia Marina, 65, 31–40.

    Article  Google Scholar 

  • Pomeroy, L.R., & Wiebe, W.J. (2001). Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquatic Microbial Ecology, 23, 187–204.

    Article  Google Scholar 

  • Schmoker, C., Hernandez-Leon, S., & Calbet, A. (2013). Microzooplankton grazing in the oceans: impacts, data variability, knowledge gaps and future directions. Journal of Plankton Research, 35(4), 691–706.

    Article  Google Scholar 

  • Stukel, M.R., Landry, M.R., Benitez-Nelson, C.R., & Goericke, R. (2011). Trophic cycling and carbon export relationships in the California current ecosystem. Limnology and Oceanography, 56(5), 1866–1878.

    Article  CAS  Google Scholar 

  • Turner, J.T. (2002). Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquatic Microbial Ecology, 27, 57–102.

    Article  Google Scholar 

  • Welch, P.S. (1948). Limnological methods. Philadelphia: Blakiston Company.

    Google Scholar 

  • York, J.K., Costas, B.A., & McManus, G.B. (2010). Microzooplankton grazing in green water-results from two contrasting estuaries. Estuarine and Coasts, 34, 373–385.

    Article  Google Scholar 

  • Yoshiyama, K., & Sharp, J.H. (2006). Phytoplankton response to nutrient enrichment in an urbanized estuary: apparent inhibition of primary production by overeutrophication. Limnology and Oceanography, 51(1), 424–434.

    Article  CAS  Google Scholar 

  • Zar, J.H. (1999). Biostatistical analysis (4th ed.). Upper Saddle River: Prentice Hall.

    Google Scholar 

Download references

Acknowledgments

We are grateful to the University of Malaya for the grants (UM.C/625/1/HIR/050, RU006D-2014 and PV060/2011B) that supported this work. We also thank the Ministry of Science, Technology and Innovation for the eScience grant (04-01-03-SF0671) and the Ministry of Education for the HiCoE grant (IOES-2014D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choon Weng Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, J.H., Lee, C.W. & Kudo, I. Temporal variation of phytoplankton growth and grazing loss in the west coast of Peninsular Malaysia. Environ Monit Assess 187, 246 (2015). https://doi.org/10.1007/s10661-015-4487-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4487-5

Keywords

Navigation