Log in

New land-based method for surveying sandy shores and extracting DEMs: the INSHORE system

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The INSHORE system (INtegrated System for High Operational REsolution in shore monitoring) is a land-base survey system designed and developed for the specific task of monitoring the evolution in time of sandy shores. This system was developed with two main objectives: (1) to produce highly accurate 3D coordinates of surface points (in the order of 0.02 to 0.03 m); and (2) to be extremely efficient in surveying a beach stretch of several kilometres. Previous tests have demonstrated that INSHORE systems fulfil such objectives. Now, the usefulness of the INSHORE system as a survey tool for the production of Digital Elevation Models (DEMs) of sandy shores is demonstrated. For this purpose, the comparison of DEMs obtained with the INSHORE system and with other relevant survey techniques is presented. This comparison focuses on the final DEM accuracy and also on the survey efficiency and its impact on the costs associated with regular monitoring programmes. The field survey method of the INSHORE system, based on profile networks, has a productivity of about 30 to 40 ha/h, depending on the beach surface characteristics. The final DEM precision, after interpolation of the global positioning system profile network, is approximately 0.08 to 0.12 m (RMS), depending on the profile network’s density. Thus, this is a useful method for 3D representation of sandy shore surfaces and can permit, after interpolation, reliable calculations of volume and other physical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aagaard, T., Kroon, A., Andersen, S., Sorensen, R. M., Quartel, S., Vinther, N. (2005). Intertidal beach change during storm conditions; Egmond, The Netherlands. Marine Geology, 218, 65–80.

    Article  Google Scholar 

  • Alcántara-Carrió, J., Fontán, A. (2009). Factors controlling the morphodynamics and geomorphologic evolution of a cuspate foreland in a volcanic intraplate island (Maspalomas, Canary Islands). Journal of Coastal Research, S.I., 56, 683–687.

    Google Scholar 

  • Anders, F. J., & Byrnes, M. A. (1991). Accuracy of shoreline change rates as determined from maps and aereal photographs. Shore and Beach, 59(1), 17–26.

    Google Scholar 

  • Anfuso, G., Domínguez, L., Gracia, F. (2007). Short and mean-term evolution of a coastal sector in Cadiz, SW Spain. Catena, 70, 229–242.

    Article  Google Scholar 

  • Baptista, P., Bastos, L., Bernardes, C., Cunha, T., Dias, J. (2008). Monitoring sandy shore morphologies by DGPS—A practical tool to generate digital elevation models. Journal of Coastal Research, 24(6), 1516–1528.

    Article  Google Scholar 

  • Baptista, P., Cunha, T. R., Bernardes, C. (2010). The validation analysis of the INSHORE system —A precise and efficient coastal survey system. Environmental Monitoring and Assessment. doi:10.1007/s10661-010-1765-0.

  • Ciccacci, S., Galiano, M., Roma, M., Salvatore, M. (2008). Morphological analysis and erosion rate evaluation in badlands of Radicofani área (Southern Tuscany—Italy). Catena, 74, 87–97.

    Article  Google Scholar 

  • Dail, H. J., Merrifield, M. A., Bevis, M. (2000). Steep beach morphology changes due to energetic wave forcing. Marine Geology, 162, 443–458.

    Article  Google Scholar 

  • Emery, K. O. (1961). A simple method of measuring beach profiles. Limnology and Oceanography, 6, 90–93.

    Article  Google Scholar 

  • Fletcher, C., Rooney, J., Barbee, M., Siang-Chyn, L., Richmond, B. (2002). Map** shoreline change using digital orthophotogrammetry on Maui, Hawaii. Journal of Coastal Research, NS38, 106–124.

    Google Scholar 

  • Forbes, D. L., Parkes, G. S., Manson, G. K., Ketch, L. A. (2004). Storms and shoreline retreat in the Southern Gulf of St. Lawrence. Marine Geology, 210, 169–204.

    Article  Google Scholar 

  • Gama, C. (2005). Dinâmica de Sistemas Sedimentares do Litoral Ocidental Português a Sul do Cabo Espichel (359 pp.). Ph.D. thesis, Portugal: University of Évora.

  • Groat, C. G. (2000). U.S. Geological Survey: Facing the new century. Sea Technology, 41(1), 45–47.

    Google Scholar 

  • Guibas, L., & Stolfi, J. (1985). Primitives for the manipulation of general subdivisions and the computation of voronoi diagrams. ACM Transactions on Graphics, 4(2), 74–123.

    Article  Google Scholar 

  • Haxel, J. H., & Holman, R. A. (2004). The sediment response of a dissipative beach to variations in wave climate. Marine Geology, 206, 73–99.

    Article  Google Scholar 

  • Huising, E. J., & Gomes Pereira, L. M. (1998). Errors and accuracy estimates of laser data acquired by various laser scanning systems for topographic applications. Journal of Photogrammetry & Remote Sensing, 53, 245–261.

    Article  Google Scholar 

  • Jackson, D. W. T., Cooper, J. A. G., del Rio, L. (2005). Geological control of beach morphodynamic state. Marine Geology, 216, 297–314.

    Article  Google Scholar 

  • Komar, P. D. (1976). Beach processes and sedimentation. New Jersey: Prentice-Hall.

    Google Scholar 

  • Krabill, W. B., Wright, C. W., Swift, R. N., Frederick, E. B., Manizade, S. S., Yungel, J. K.,et al. (2000). Airborne laser map** of assateague national seachore beach. Photogrammetric Engineering and Remote Sensing, 66, 65–71.

    Google Scholar 

  • Lancker, V., Lanckneus, J., Hearn, S., Hoekstra, P., Levoy, F., Miles, J., et al. (2004). Coastal and nearshore morphology, bedforms and sediment transport pathways at Teignmouth (UK). Continental Shelf Research, 24, 1171–1202.

    Article  Google Scholar 

  • Lee, D. T., & Schachter, B. J. (1980). Two algorithms for constructing a delaunay triangulation. International Journal of Computer and Information Sciences, 9(3), 219–242.

    Article  Google Scholar 

  • List, J. H., Farris, A. S., Sullivan, C. (2006). Reversing storm hotspots on sandy beaches: Spatial and temporal characteristics. Marine Geology, 226, 261–279.

    Article  Google Scholar 

  • Livingstone, D., Raper, J., McCarthy, T. (1999). Integrating aereal videography and digital photography with terrain modelling: An application for coastal geomorphology. Geomophology, 29, 77–92.

    Article  Google Scholar 

  • Morton, R. A., Leach, M. P., Paine, J. G., Cardoza, M. A. (1993). Monitoring beach changes using GPS surveying techniques. Journal of Coastal Research, 9(3), 702–720.

    Google Scholar 

  • Plant, N. G., & Holman, R. A. (1997). Intertidal beach profile estimation using video images. Marine Geology, 140, 1–24.

    Article  Google Scholar 

  • Petzold, B., Reiss, P., Stossel, W. (1999). Laser scanning—Surveying and map** agencies are using a new technique for the derivation of digital elevation models. Journal of Photogrammetry & Remote Sensing, 54, 95–104.

    Article  Google Scholar 

  • Reis, A., & Gama, C. (2010). Sand size versus beachface slope—An explanation based on the constructal law. Geomorphology, 114, 276–283.

    Article  Google Scholar 

  • Ruggiero, P., Kaminsky, G. M., Gelfenbaum, G., Voigt, B. (2005). Seasonal to interannual morphodynamics along a high-energy dissipative littoral cell. Journal of Coastal Research, 21(3), 553–587.

    Article  Google Scholar 

  • Saye, S. E., van der Wal, D., Pye, K., Blott, S. J. (2005). Beach–dune morphological relationships and erosion/accretion: An investigation at five sites in England and Wales using LIDAR data. Geomorphology, 72, 128–155.

    Article  Google Scholar 

  • Silva, A., Taborda, R., Rodrigues, A., Duarte, J., Cascalho, J. (2007). Longshore drift estimation using fluorescent tracers: New insights from an experiment at Comporta Beach, Portugal. Marine Geology, 240, 137–150.

    Article  Google Scholar 

  • Wehr, A., & Lohr, U. (1999). Airborne laser scanning—An introduction and overview. Journal of Photogrammetry & Remote Sensing, 54, 68–82.

    Article  Google Scholar 

  • Woolard, J. W., & Colby, J. D. (2002). Spatial characterization, resolution, and volumetric change of coastal dunes using airbone lidar: Cape Hatteras, North Carolina. Geomorphology, 48, 269–287.

    Article  Google Scholar 

  • Wright, L. D., & Short, A. D. (1984). Morphodynamic variability of surf zones and beaches: A synthesis. Marine Geology, 56, 93–118.

    Article  Google Scholar 

  • Zhang, K., Whitman, D., Leatherman, S., Robertson, W. (2005). Quantification of beach changes caused by Hurricane Floyd along Florida’s Atlantic coast using airborne laser surveys. Journal of Coastal Research, 21, 123–134.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Baptista.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baptista, P., Cunha, T.R., Matias, A. et al. New land-based method for surveying sandy shores and extracting DEMs: the INSHORE system. Environ Monit Assess 182, 243–257 (2011). https://doi.org/10.1007/s10661-011-1873-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-1873-5

Keywords

Navigation