Log in

Biocontrol efficacy of antagonists Trichoderma and Bacillus against post-harvest diseases in mangos

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Stem-end and anthracnose fruit rot diseases caused by Lasiodiplodia theobromae and Colletotrichum gloeosporioides are devastating post-harvest diseases occurring in mangos and many other economically important fruit crops. In this study, the marine antagonists Trichoderma and Bacillus isolated from marine sponges and sea fans displayed potent biocontrol activity against both diseases on mango cultivars Nam Dok Mai Si Thong and Nam Dok Mai. Mangos were exposed to a spore suspension of T. asperellum KUFA 0042 at a concentration of 106 spores mL−1 or a crude extract of the same strain at a concentration of 10 g L−1 through a dip** process and then inoculated with pathogens. Remarkably, there was a significant suppression (p < 0.05) of lesion development caused by L. theobromae, with a reduction rate reaching up to 95%. Similarly, the treatment significantly reduced the lesion development of anthracnose disease caused by C. gloeosporioides by up to 93%. Additionally, mangos treated with a crude extract of marine B. subtilis KUFA 0163 at a concentration of 10 g L−1 also showed a reduction in the incidences of both stem-end rot and anthracnose diseases, with disease suppression of up to 94%. The spore suspensions of Trichoderma, Bacillus, and their crude extracts had no effect on mango physiology. This study’s results show the potential of marine-derived Trichoderma and Bacillus strains as promising candidates for the development of novel biocontrol agents. These could effectively manage post-harvest diseases in mango crops without impacting the fruit's physiology

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Admasu, W., Sahile, S., & Kibret, M. (2014). Assessment of potential antagonists for anthracnose (Colletotrichum gloeosporioides) disease of mango (Mangifera indica L.) in North Western Ethiopia (Pawe). Archives of Phytopathology and Plant Protection, 47(18), 2176–2186.

    Article  CAS  Google Scholar 

  • Agrawal, S., Adholeya, A., Barrow, C. J., & Deshmukh, S. K. (2018). Marine fungi: An untapped bioresource for future cosmeceuticals. Phytochemistry Letters, 23, 15–20.

    Article  CAS  Google Scholar 

  • Agrios, G. (2005). Plant pathology (5th ed.). Elsevier Academic Press.

    Google Scholar 

  • Aguirre-Güitrón, L., Calderón-Santoyo, M., Lagarón, J. M., Prieto, C., & Ragazzo-Sánchez, J. A. (2022). Formulation of the biological control yeast Meyerozyma caribbica by electrospraying process: effect on postharvest control of anthracnose in mango (Mangifera indica L.) and papaya (Carica papaya L.). Journal of the Science of Food and Agriculture, 102(2), 696–706.

    Article  PubMed  Google Scholar 

  • Alberto TuãoGava, C., Araújo Pereira, C., Fernnanda de Souza Tavares, P., & Domingos da Paz, C. (2022). Applying antagonist yeast strains to control mango decay caused by Lasiodiplodia theobromae and Neofusicoccum parvum. Biological Control, 170, 104912.

    Article  Google Scholar 

  • Alvindia, D. G. (2018). The antagonistic action of Trichoderma harzianum strain DGA01 against anthracnose-causing pathogen in mango cv. ‘Carabao.’ Biocontrol Science and Technology, 28(6), 591–602.

    Article  Google Scholar 

  • Barman, K., Asrey, R., Singh, D., Patel, V. B., & Sharma, S. (2017). Effect of Pseudomonas fluorescens formulations on decay and quality of mango (Mangifera indica) fruits during storage. Indian Journal of Agricultural Sciences, 87, 1214–1218.

    Article  CAS  Google Scholar 

  • Chalearmsrimuang, T., Ismail, S. I., Mazlan, N., Suasaard, S., & Dethoup, T. (2019). Marine-derived fungi: A promising source of halo tolerant biological control agents against plant pathogenic fungi. Journal of Pure and Applied Microbiology, 13(1), 209–223.

    Article  CAS  Google Scholar 

  • Chalearmsrimuang, T., Suasa-Ard, S., Jantasorn, A., & Dethoup, T. (2022). Effects of marine antagonistic fungi against plant pathogens and rice growth promotion activity. Journal of Pure and Applied Microbiology, 16(1), 402–418.

    Article  CAS  Google Scholar 

  • Degani, O., & Dor, S. (2021). Trichoderma biological control to protect sensitive maize hybrids against late wilt disease in the field. Journal of Fungi, 7(4), 315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dethoup, T., Kaewsalong, N., Songkumorn, P., & Jantasorn, A. (2018). Potential of a marine-derived species, Talaromyces tratensis KUFA 0091 against rice diseases. Biological Control, 119, 1–6.

    Article  CAS  Google Scholar 

  • Diskin, S., Sharir, T., Feygenberg, O., Maurer, D., & Alkan, N. (2019). Fludioxonil – A potential alternative for postharvest disease control in mango fruit. Crop Protection, 124, 104855.

    Article  CAS  Google Scholar 

  • Dou, K., Lu, Z., Wu, Q., Ni, M., Yu, C., Wang, M., Li, Y., Wang, X., **e, H., Chen, J., & Zhang, C. (2020). MIST: A multilocus identification system for Trichoderma. Applied and Environmental Microbiology, 86(18), e01532-e1620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Demerdash, A., Kumla, D., & Kijjoa, A. (2020). Chemical diversity and biological activities of meroterpenoids from marine derived-fungi: A comprehensive update. Marine Drugs, 18(6), 317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evangelista-Martínez, Z., Ek-Cen, A., Torres-Calzada, C., & Uc-Várguez, A. (2022). Potential of Streptomyces sp. strain AGS-58 in controlling anthracnose-causing Colletotrichum siamense from post-harvest mango fruits. Journal of Plant Pathology, 104(2), 553–563.

    Article  Google Scholar 

  • Feygenberg, O., Diskin, S., Maurer, D., & Alkan, N. (2021). Effect of biological and chemical treatments during flowering on stem-end rot disease, and mango yield. Plant Disease, 105(6), 1602–1609.

    Article  CAS  PubMed  Google Scholar 

  • Gava, C. A. T., de Castro, A. P. C., Pereira, C. A., & Fernandes-Júnior, P. I. (2018). Isolation of fruit colonizer yeasts and screening against mango decay caused by multiple pathogens. Biological Control, 117, 137–146.

    Article  Google Scholar 

  • Guo, R., Li, G., Zhang, Z., & Peng, X. (2022). Structures and biological activities of secondary metabolites from Trichoderma harzianum. Marine Drugs, 20(11), 107.

  • Hashem, A., Tabassum, B., & FathiAbd Allah, E. (2019). Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi Journal of Biological Sciences, 26(6), 1291–1297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **, P., Wang, H., Tan, Z., Xuan, Z., Dahar, D. Y., Li, Q. X., Miao, W., & Liu, W. (2020). Antifungal mechanism of bacillomycin D from Bacillus velezensis HN-2 against Colletotrichum gloeosporioides Penz. Pesticide Biochemistry and Physiology, 163, 102–107.

    Article  CAS  PubMed  Google Scholar 

  • Kaewsalong, N., Songkumarn, P., Duangmal, K., & Dethoup, T. (2019). Synergistic effects of combinations of novel strains of Trichoderma species and Coscinium fenestratum extract in controlling rice dirty panicle. Journal of Plant Pathology, 101(2), 367–372.

    Article  Google Scholar 

  • Kaspar, F., Neubauer, P., & Neubauer, P. (2019). Bioactive Secondary Metabolites from Bacillus subtilis: A Comprehensive Review. Journal of Natural Products, 82(7), 2038–2053.

    Article  CAS  PubMed  Google Scholar 

  • Kim, P., Ryu, J., Kim, Y. H., & Chi, Y.-T. (2010). Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. Journal of Microbiology and Biotechnology, 20, 138–145.

    Article  CAS  PubMed  Google Scholar 

  • Klaram, R., Jantasorn, A., & Dethoup, T. (2022). Efficacy of marine antagonist, Trichoderma spp. as halo-tolerant biofungicide in controlling rice diseases and yield improvement. Biological Control, 172, 104985.

    Article  CAS  Google Scholar 

  • Konsue, W., Dethoup, T., & Limtong, S. (2020). Biological control of fruit rot and anthracnose of postharvest mango by antagonistic yeasts from economic crops leaves. Microorganisms, 8(3), 317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Z., Li, M., Wang, S., Huang, H., & Zhang, W. (2022). Sulfur-containing metabolites from marine and terrestrial fungal sources: Origin, structures, and bioactivities. Marine Drugs, 20(12), 765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matulaprungsan, B., Boonyaritthongchai, P., Wongs-Aree, C., Kanlayanarat, S. S., & Srisurapanon, V. (2016). Postharvest disease development in the mango supply chain in Thailand. Acta Horticulturae, 1088, 289–292.

    Google Scholar 

  • Meena, M., Swapnil, P., Zehra, A., Dubey, M. K., & Upadhyay, R. S. (2017). Antagonistic assessment of Trichoderma spp. by producing volatile and non-volatile compounds against different fungal pathogens. Archives of Phytopathology and Plant Protection, 50(13–14), 629–648.

    Article  CAS  Google Scholar 

  • Montiel, L. G. H., Rodriguez, R. Z., Angulo, C., Puente, E. O. R., Evangelina, E., Quiñonez Aguilar, E. E. Q., & Galicia, R. (2017). Marine yeasts and bacteria as biological control agents against anthracnose on mango. Journal of Phytopathology, 165(11–12), 833–840.

    Article  Google Scholar 

  • Nampila, S., Choeichaiyaphum, C., & Ayutthaya, S. I. N. (2022). Control of quality and management of rot disease by using coating and temperature controlling for “Nam Dok Mai Sithong” mango. Acta Horticulturae, 1336, 387–394.

    Article  Google Scholar 

  • Ons, L., Bylemans, D., Thevissen, K., & Cammue, B.P.A. (2020). Combining biocontrol agents with chemical fungicides for integrated plant fungal disease control. Microorganisms 8(12), 1930, 1–19.

  • Prabakar, K., Raguchander, T., Saravanakumar, D., Muthulakshmi, P., Parthiban, V. K., & Prakasam, V. (2008). Management of postharvest disease of mango anthracnose incited by Colletotrichum gleosporioides. Archives of Phytopathology and Plant Protection, 41(5), 333–339.

    Article  Google Scholar 

  • Reyes-Perez, J. J., Hernandez-Montiel, L. G., Vero, S., Noa-Carrazana, J. C., Quiñones-Aguilar, E. E., & Rincón-Enríquez, G. (2019). Postharvest biocontrol of Colletotrichum gloeosporioides on mango using the marine bacterium Stenotrophomonas rhizophila and its possible mechanisms of action. Journal of Food Science and Technology, 56(11), 4992–4999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Montesinos, B., Diánez, F., Moreno-Gavira, A., Gea, F. J., & Santos, M. (2019). Plant growth promotion and biocontrol of Pythium ultimum by saline tolerant Trichoderma isolates under salinity stress. International Journal of Environmental Research and Public Health, 16(11), 2053.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sangudom, T., Wattanawan, C., Makkumrai, W., Chatbanyong, R., & Tongtao, S. (2019). Improvement on the supply chain of Thai mango for exporting. Acta Horticulturae, 1244, 209–214.

    Article  Google Scholar 

  • Shafi, J., Tian, H., & Ji, M. (2017). Bacillus species as versatile weapons for plant pathogens: A review. Biotechnology and Biotechnological Equipment, 31(3), 446–459.

    Article  CAS  Google Scholar 

  • Sivakumar, D., Tuna Gunes, N., & Romanazzi, G. (2021). A comprehensive review on the impact of edible coatings, essential oils, and their nano formulations on postharvest decay anthracnose of avocados, mangoes, and papayas. Frontiers in Microbiology, 12, 711092.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sood, M., Kapoor, D., Kumar, V., Sheteiwy, M. S., Ramakrishnan, M., Landi, M., Araniti, F., & Sharma, A. (2020). Trichoderma: The “secrets” of a multitalented biocontrol agent. Plants, 762, 1–25.

    Google Scholar 

  • Stracquadanio, C., Quiles, J. M., Meca, G., & Cacciola, S. O. (2021). Antifungal activity of bioactive metabolites produced by Trichoderma asperellum and Trichoderma atroviride in liquid medium. Journal of Fungi, 263, 1–18.

    Google Scholar 

  • Suasa-ard, S., Eakjamnong, W., & Dethoup, T. (2019). A novel biological control agent against postharvest mango disease caused by Lasiodioplodia theobromae. European Journal of Plant Pathology, 155(2), 583–592.

    Article  CAS  Google Scholar 

  • Suhanna, A., Nor HanisAifaa, Y., & Shazalwardi, S. (2013). Trichoderma sp. as a biological control agent in the postharvest treatment of mango stem-end rot. Acta Horticulturae, 1012, 775–782.

    Article  Google Scholar 

  • Yang, Y., Dong, G., Wang, M., **an, X., Wang, J., & Liang, X. (2021). Multifungicide resistance profiles and biocontrol in Lasiodiplodia theobromae from mango fields. Crop Protection, 145, 105611.

    Article  CAS  Google Scholar 

  • Zakaria, L. (2021). Diversity of Colletotrichum species associated with anthracnose disease in tropical fruit crops - a review. Agriculture (switzerland), 11(4), 297.

    CAS  Google Scholar 

  • Zheng, M., Shi, J., Shi, J., Wang, Q., & Li, Y. (2013). Antimicrobial effects of volatiles produced by two antagonistic Bacillus strains on the anthracnose pathogen in postharvest mangos. Biological Control, 65(2), 200–206.

    Article  CAS  Google Scholar 

  • Zhou, D., **g, T., Chen, Y., Yun, T., Qi, D., Zang, X., Zhang, M., Wei, Y., Li, K., Zhao, Y., Wang, W., & **e, J. (2022). Biocontrol potential of a newly isolated Streptomyces sp. HSL-9B from mangrove forest on postharvest anthracnose of mango fruit caused by Colletotrichum gloeosporioides. Food Control, 135, 108836.

    Article  CAS  Google Scholar 

  • Zhu, H., Zhou, H., Ren, Z., & Liu, E. (2022). Control of Magnaporthe oryzae and rice growth promotion by Bacillus subtilis JN005. Journal of Plant Growth Regulation, 41(6), 2319–2327.

    Article  CAS  Google Scholar 

  • Zou, X., Wei, Y., Dai, K., Xu, F., Wang, H., & Shao, X. (2021). Yeasts from intertidal zone marine sediment demonstrate antagonistic activities against Botrytis cinerea in vitro and in strawberry fruit. Biological Control, 158, 104612.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Office of the Ministry of Higher Education, Science, Research and Innovation; and the Thailand Science Research and Innovation through the Kasetsart University Reinventing University Program 2021 and National Research Council of Thailand (NRCT), grant no. N41A640083.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tida Dethoup.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nujthet, Y., Kaewkrajay, C., Kijjoa, A. et al. Biocontrol efficacy of antagonists Trichoderma and Bacillus against post-harvest diseases in mangos. Eur J Plant Pathol 168, 315–327 (2024). https://doi.org/10.1007/s10658-023-02757-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-023-02757-1

Keywords

Navigation