Log in

Marine bacterial activity against phytopathogenic Pseudomonas show high efficiency of Planctomycetes extracts

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The genus Pseudomonas integrates several phytopathogenic species like P. syringae pv. syringae (Pss) and P. syringae pv. actinidae (Psa) and P viridiflava. Currently, effective treatments against these Pseudomonas phytopathogens are limited and mostly based on preventive measures or toxic agrochemicals, which pose risks of resistance-acquisition. Marine bacteria may represent new sources of sustainable bioactive compounds with use in agriculture. We assessed the anti-Pseudomonas activity of extracts from marine bacterial strains of seven genera of Actinobacteria and Planctomycetes. Pseudomonas strains were isolated from Portuguese orchards and included five Psa and one Pseudomonas sp. (B65). All the Pseudomonas strains used in this study shared common characteristics regarding swimming-motility, no biofilm-production in abiotic surfaces and production of indole-3-acetic acid (IAA) using a tryptophan-dependent pathway, showing the maintenance of virulence traits in culture. Four representative Pseudomonas strains were exposed to the marine Actinobacteria and Planctomycetes extracts obtained by liquid–liquid phase (LLPE). Only the planctomycetes Alienimonas chondri, Rhodopirellula rubra, Rubrinisphaera brasiliensis and Novipirellula caenicola inhibited Pseudomonas growth with percentages ranging from 56.48% to 83.08%. LC/HRMS dereplication of these bioactive extracts indicated the presence of several bioactive secondary metabolites like diketopiperazines, opening new perspectives for the use of these bacterial isolates and derived compounds in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-Mageed, W. M., Juhasz, B., Lehri, B., Alqahtani, A. S., Nouioui, I., Pech-Puch, D., ... & Karlyshev, A. V., 2020. Whole genome sequence of Dermacoccus abyssi MT1. 1 isolated from the Challenger Deep of the Mariana Trench reveals phenazine biosynthesis locus and environmental adaptation factors. Marine drugs, 18(3), 131. https://doi.org/10.3390/md18030131.

  • Al-Daoude, A., Arabi, M. I. E., Ammouneh, H., 2009. Studying Erwinia amylovora isolates from Syria for copper resistance and streptomycin sensitivity. Journal of plant pathology. 203-205. https://doi.org/10.4454/JPP.V91I1.644.

  • Al-Karablieh, N., Mutlak, I., & Al-Dokh, A. (2017). Isolation and identification of Pseudomonas viridiflava, the causal agent of fruit rotting of cucumis sativus. JJ Agri Sci, 13(1), 79–91.

    Google Scholar 

  • Alshaibani, M. M., MohamadZin, N., Jalil, J., Sidik, N. M., Ahmad, S. J., Kamal, N., & Edrada-Ebel, R. (2017). Isolation, purification, and characterization of five active diketopiperazine derivatives from endophytic Streptomyces SUK 25 with antimicrobial and cytotoxic activities. Journal of Microbiology and Biotechnology., 27(7), 1249–1256. https://doi.org/10.4014/jmb.1608.08032

    Article  CAS  PubMed  Google Scholar 

  • Bartoli, C., Lamichhane, J. R., Berge, O., Varvaro, L., & Morris, C. E. (2015). Mutability in P seudomonas viridiflava as a programmed balance between antibiotic resistance and pathogenicity. Molecular Plant Pathology., 16(8), 860–869. https://doi.org/10.1111/mpp.12243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behlau, F., Gochez, A. M., Lugo, A. J., Elibox, W., Minsavage, G. V., Potnis, N., White, F. F., Ebrahim, M., Jones, J. B., Ramsubhag, A., 2017. Characterization of a unique copper resistance gene cluster in Xanthomonas campestris pv. Campestris isolated in Trinidad, West Indies. European journal of plant pathology. 147(3), 671–681. https://doi.org/10.1007/s10658-016-1035-2.

  • Calisto, R., Sæbø, E. F., Storesund, J. E., Øvreås, L., Herfindal, L., & Lage, O. M. (2019). Anticancer activity in planctomycetes. Frontiers in Marine Science., 5, 499. https://doi.org/10.3389/fmars.2018.00499

    Article  Google Scholar 

  • Cameron, A., & Saro**i, V., 2014. Pseudomonas syringae pv. actinidiae: chemical control, resistance mechanisms and possible alternatives. Plant pathology. 63(1), 1–11. https://doi.org/10.1111/ppa.12066.

  • Cellini, A., Donati, I., Fiorentini, L., Vandelle, E., Polverari, A., Venturi, V., ... & Spinelli, F., 2020. N-Acyl homoserine lactones and lux solos regulate social behaviour and virulence of Pseudomonas syringae pv. actinidiae. Microbial ecology, 79(2), 383–396. https://doi.org/10.1007/s00248-019-01416-5.

  • Costa-Santos, M., Mariz-Ponte, N., Dias, M.C., Moura, L., Marques, G., Santos, C., 2021. Effect of Bacillus spp. and Brevibacillus sp. on the Photosynthesis and Redox Status of Solanum lycopersicum. Horticulturae. 7, 24. https://doi.org/10.3390/horticulturae7020024.

  • Dakora, F. D., Matiru, V., & Kanu, A. S. (2015). Rhizosphere ecology of lumichrome and riboflavin, two bacterial signal molecules eliciting developmental changes in plants. Frontiers in Plant Science., 6, 700. https://doi.org/10.3389/fpls.2015.00700

    Article  PubMed  PubMed Central  Google Scholar 

  • Djami-Tchatchou, A. T., Harrison, G. A., Harper, C. P., Wang, R., Prigge, M. J., Estelle, M., & Kunkel, B. N. (2020). Dual role of auxin in regulating plant defense and bacterial virulence gene expression during Pseudomonas syringae PtoDC3000 pathogenesis. Molecular Plant-Microbe Interactions., 33(8), 1059–1071. https://doi.org/10.1094/MPMI-02-20-0047-R

    Article  CAS  PubMed  Google Scholar 

  • Donati, I., Buriani, G., Cellini, A., Mauri, S., Costa, G., Spinelli, F., 2014. New insights on the bacterial canker of kiwifruit (Pseudomonas syringae pv. Actinidiae). Journal of berry research. 4(2), 53–67. https://doi.org/10.3233/JBR-140073,

  • Donati, I., Cellini, A., Sangiorgio, D., Vanneste, J. L., Scortichini, M., Balestra, G. M., & Spinelli, F., 2020. Pseudomonas syringae pv. Actinidiae: Ecology, infection dynamics and disease epidemiology. Microbial ecology. 80(1), 81–102. https://doi.org/10.1007/s00248-019-01459-8.

  • Duca, D., Lorv, J., Patten, C. L., Rose, D., & Glick, B. R. (2014). Indole-3-acetic acid in plant–microbe interactions. Antonie Van Leeuwenhoek, 106(1), 85–125. https://doi.org/10.1007/s10482-013-0095-y

    Article  CAS  PubMed  Google Scholar 

  • Elfalah, H. W., Usup, G., & Ahmad, A. (2013). Anti-microbial properties of secondary metabolites of marine gordonia tearrae extract. Journal of Agricultural Science, 5, 94–101. https://doi.org/10.5539/jas.v5n6p94

    Article  Google Scholar 

  • European and Mediterranean Plant Protection Organization, 2020. Pseudomonas syringae pv. actinidiae. https://gd.eppo.int/taxon/PSDMAK (accessed December 2020).

  • Faria, M., Bordin, N., Kizina, J., Harder, J., Devos, D., & Lage, O. M. (2018). Planctomycetes attached to algal surfaces: Insight into their genomes. Genomics, 110(5), 231–238. https://doi.org/10.1016/j.ygeno.2017.10.007

    Article  CAS  PubMed  Google Scholar 

  • Flores, O., Prince, C., Nunez, M., Vallejos, A., Mardones, C., Yanez, C., Besoain, X., Bastías, R., 2018. Genetic and phenotypic characterization of indole-producing isolates of Pseudomonas syringae pv. Actinidiae obtained from Chilean kiwifruit orchards. Frontiers in microbiology. 9, 1907. https://doi.org/10.3389/fmicb.2018.01907.

  • Gomila, M., Busquets, A., Mulet, M., García-Valdés, E., & Lalucat, J. (2017). Clarification of taxonomic status within the Pseudomonas syringae species group based on a phylogenomic analysis. Frontiers in Microbiology., 8, 2422. https://doi.org/10.3389/fmicb.2017.02422

    Article  PubMed  PubMed Central  Google Scholar 

  • Graça, A. P., Bondoso, J., Gaspar, H., Xavier, J. R., Monteiro, M. C., de la Cruz, M., Oves-Costales, D., Vicente, F., Lage, O. M., 2013. Antimicrobial activity of heterotrophic bacterial communities from the marine sponge Erylus discophorus (Astrophorida, Geodiidae). PLOS one. 8(11). https://doi.org/10.1371/journal.pone.0078992.

  • Graça, A. P., Calisto, R., & Lage, O. M. (2016). Planctomycetes as novel source of bioactive molecules. Frontiers in Microbiology., 7, 1241. https://doi.org/10.3389/fmicb.2016.01241

    Article  PubMed  PubMed Central  Google Scholar 

  • Graça, A. P., Viana, F., Bondoso, J., Correia, M. I., Gomes, L., Humanes, M., Reis, A., Xavier, J. R., Gaspar, H., & Lage, O. M. (2015). The antimicrobial activity of heterotrophic bacteria isolated from the marine sponge Erylus deficiens (Astrophorida, Geodiidae). Frontiers in Microbiology., 6, 389. https://doi.org/10.3389/fmicb.2015.00389

    Article  PubMed  PubMed Central  Google Scholar 

  • Gutiérrez-Barranquero J. A., Cazorla F. M., de Vicente Antonio., 2019. Pseudomonas syringae pv. syringae associated with mango trees, a particular pathogen within the “Hodgepodge” of the Pseudomonas syringae complex. Frontiers in Plant Science. 10, 570. https://doi.org/10.3389/fpls.2019.00570.

  • Heredia-Ponce, Z., Gutiérrez-Barranquero, J. A., Purtschert-Montenegro, G., Eberl, L., Cazorla, F. M., & de Vicente, A., 2020. Biological role of EPS from Pseudomonas syringae pv. syringae UMAF0158 extracellular matrix, focusing on a Psl-like polysaccharide. NPJ biofilms and microbiomes. 6(1), 1–13. https://doi.org/10.1038/s41522-020-00148-6.

  • Hulin, M. T., Jackson, R. W., Harrison, R. J., & Mansfield, J. W. (2020). Cherry picking by pseudomonads: After a century of research on canker, genomics provides insights into the evolution of pathogenicity towards stone fruits. Plant Pathology., 69(6), 962–978. https://doi.org/10.1111/ppa.13189

    Article  PubMed  PubMed Central  Google Scholar 

  • Husak, V. V., 2015. Copper and copper-containing pesticides: metabolism, toxicity and oxidative stress. Journal of vasyl stefanyk precarpathian national university. 2(1), 39–51. https://doi.org/10.15330/jpnu.2.1.38-50.

  • Josenhans, C., & Suerbaum, S. (2002). The role of motility as a virulence factor in bacteria. International Journal of Medical Microbiology., 291(8), 605–614. https://doi.org/10.1078/1438-4221-00173

    Article  CAS  PubMed  Google Scholar 

  • Kachhawa, D. (2017). Microorganisms as a biopesticides. Journal of Entomology and Zoology Studies., 5(3), 468–473.

    Google Scholar 

  • Kallscheuer, N., Moreira, C., Airs, R., Llewellyn, C. A., Wiegand, S., Jogler, C., & Lage, O. M. (2019a). Pink-and orange-pigmented Planctomycetes produce saproxanthin-type carotenoids including a rare C45 carotenoid. Environmental Microbiology Reports, 11(6), 741–748. https://doi.org/10.1111/1758-2229.12796

    Article  CAS  PubMed  Google Scholar 

  • Kallscheuer, N., Wiegand, S., Peeters, S. H., Jogler, M., Boedeker, C., Heuer, A., Rast, P., Jetten, M. S. M., Rohde, M., Jogler, C., 2019. Description of three bacterial strains belonging to the new genus Novipirellula gen. nov., reclassificiation of Rhodopirellula rosea and Rhodopirellula caenicola and readjustment of the genus threshold of the phylogenetic marker rpoB for Planctomycetaceae. Antonie van Leeuwenhoek. 1–17. https://doi.org/10.1007/s10482-019-01374-5.

  • Kim, G. H., Jung, J. S., & Koh, Y. J. (2017). Occurrence and epidemics of bacterial canker of kiwifruit in Korea. The Plant Pathology Journal., 33(4), 351. https://doi.org/10.5423/PPJ.RW.01.2017.0021

    Article  PubMed  PubMed Central  Google Scholar 

  • Kunkel, B. N., & Harper, C. P. (2018). The roles of auxin during interactions between bacterial plant pathogens and their hosts. Journal of Experimental Botany., 69(2), 245–254. https://doi.org/10.1093/jxb/erx447

    Article  CAS  PubMed  Google Scholar 

  • Lage, O. M., & Bondoso, J. (2011). Planctomycetes diversity associated with macroalgae. FEMS Microbial Ecology., 78(2), 366–375. https://doi.org/10.1111/j.1574-6941.2011.01168.x

    Article  CAS  Google Scholar 

  • Lamichhane, J. R., Osdaghi, E., Behlau, F., Köhl, J., Jones, J. B., & Aubertot, J. N. (2018). Thirteen decades of antimicrobial copper compounds applied in agriculture. A Review. Agronomy for Sustainable Development., 38(3), 28. https://doi.org/10.1007/s13593-018-0503-9

    Article  CAS  Google Scholar 

  • Lamichhane, J. R., Varvaro, L., Parisi, L., Audergon, J. M., & Morris, C. E. (2014). Disease and frost damage of woody plants caused by Pseudomonas syringae: Seeing the forest for the trees. Advances in Agronomy., 126, 235–295. https://doi.org/10.1016/B978-0-12-800132-5.00004-3

    Article  Google Scholar 

  • Lawson, P. A., 2018. The phylum actinobacteria. In The Bifidobacteria and Related Organisms. 1–8. Academic Press. https://doi.org/10.1016/B978-0-12-805060-6.00001-6.

  • Liotti, R. G., da Silva Figueiredo, M. I., & Soares, M. A. (2019). Streptomyces griseocarneus R132 controls phytopathogens and promotes growth of pepper (Capsicum annuum). Biological Control., 138, 104065. https://doi.org/10.1016/j.biocontrol.2019.104065

    Article  CAS  Google Scholar 

  • Lopchuk, J. M., 2019. Imide Natural Products. Imides. 255-334. https://doi.org/10.1016/B978-0-12-815675-9.00007-2.

  • Luzzio, F. A. (Ed.). (2019). Imides: medicinal, agricultural, synthetic applications and natural products chemistry.

  • Mancha, S. R., Regnery, C. M., Dahlke, J. R., Miller, K. A., & Blake, D. J. (2013). Antiviral activity of (+)-sattabacin against varicella zoster. Bioorganic & Medicinal Chemistry Letters., 23(2), 562–564. https://doi.org/10.1016/j.bmcl.2012.11.017

    Article  CAS  Google Scholar 

  • Mangamuri, U. K., Muvva, V., Poda, S., Manavathi, B., Bhujangarao, C., & Yenamandra, V. (2016). Chemical characterization & bioactivity of diketopiperazine derivatives from the mangrove derived Pseudonocardia endophytica. The Egyptian Journal of Aquatic Research., 42(2), 169–175. https://doi.org/10.1016/j.ejar.2016.03.001

    Article  Google Scholar 

  • Naik, D. N., Wahidullah, S., & Meena, R. M. (2013). Attenuation of Pseudomonas aeruginosa virulence by marine invertebrate–derived Streptomyces sp. Letters in Applied Microbiology, 56(3), 197–207. https://doi.org/10.1111/lam.12034

    Article  CAS  PubMed  Google Scholar 

  • Nuno Mariz-Ponte, N., Gimranov, E., Rego, R., Moura, L., Santos, C., & Tavares, F. (2021). Biochemical and functional diversity found in a highly clonal population of Portuguese Pseudomonas syringae pv. actinidiae. Unpublished results. Under revision.

  • Parada, J. P., Orellana, M., Amaza, L., Pérez-Martínez, I., Holuigue, L., & Salinas, P. (2017). Characterization of Chilean Pseudomonas syringae pv actinidiae strains isolated from infected orchards. PeerJ Preprints, 5, p.e2787v1. https://doi.org/10.7287/peerj.preprints.2787v1

  • Pérez-Victoria, I., Martín, J., & Reyes, F. (2016). Combined LC/UV/MS and NMR Strategies for the Dereplication of Marine Natural Products. Planta Medica., 82(9/10), 857–871. https://doi.org/10.1055/s-0042-101763

    Article  CAS  PubMed  Google Scholar 

  • Petriccione, M., Zampella, L., Mastrobuoni, F., Scortichini, M., 2017. Occurrence of copper-resistant Pseudomonas syringae pv. Syringae strains isolated from rain and kiwifruit orchards also infected by P. s. pv. Actinidiae. European Journal of Plant Pathology. 149(4), 953–968. https://doi.org/10.1007/s10658-017-1246-1.

  • Purahong, W., Orrù, L., Donati, I., Perpetuini, G., Cellini, A., Lamontanara, A., ... & Spinelli, F., 2018. Plant microbiome and its link to plant health: Host species, organs and Pseudomonas syringae pv. actinidiae infection sha** bacterial phyllosphere communities of kiwifruit plants. Frontiers in plant science, 9, 1563.

  • Sandargo, B., Jeske, O., Boedeker, C., Wiegand, S., Wennrich, J. P., Kallscheuer, N., Jogler, M., Rohde, M., Jogler, C., Surup, F., 2020. Stieleriacines, N-Acyl Dehydrotyrosines From the Marine Planctomycete Stieleria neptunia sp. nov. Frontiers in microbiology. 11, 1408. https://doi.org/10.3389/fmicb.2020.01408.

  • Santos, J. D., Vitorino, I., De la Cruz, M., Díaz, C., Cautain, B., Annang, F., Pérez-Moreno, G., Martinez, I., Tormo, J. R., Martín, J. M., Urbatzka, R., Vicente, F. M., Lage, O. M., 2019. Bioactivities and extract dereplication of Actinomycetales isolated from marine sponges. Frontiers in Microbiology. 10. https://doi.org/10.3389/fmicb.2019.00727.

  • Santos, J. D., Vitorino, I., de la Cruz, M., Díaz, C., Cautain, B., Annang, F., Pérez-Moreno, Gonzalez, I., I., Tormo, J. R., Martín, J. M., Vicente, F. M., Lage, O. M., 2020. Diketopiperazines and other bioactive compounds from bacterial symbionts of marine sponges. Antonie van leeuwenhoek, 113(7), 875-887. https://doi.org/10.1007/s10482-020-01398-2.

  • Sarris, P. F., Trantas, E. A., Mpalantinaki, E., Ververidis, F., & Goumas, D. E. (2012). Pseudomonas viridiflava, a multi host plant pathogen with significant genetic variation at the molecular level. PLoS ONE, 7(4), e36090. https://doi.org/10.1371/journal.pone.0036090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schinke, C., Martins, T., Queiroz, S. C., Melo, I. S., & Reyes, F. G. (2017). Antibacterial compounds from marine bacteria, 2010–2015. Journal of Natural Products., 80(4), 1215–1228. https://doi.org/10.1021/acs.jnatprod.6b00235

    Article  CAS  PubMed  Google Scholar 

  • Shao, X., **e, Y., Zhang, Y., Deng, X., 2019. Biofilm Formation Assay in Pseudomonas syringae. Bio-protocol. 9(10), e3237. https://doi.org/10.21769/BioProtoc.3237.

  • Shila, S. J., Islam, M. R., Ahmed, N. N., Dastogeer, K. M. G., Meah, M. B., 2013. Detection of Pseudomonas syringae pv. lachrymans associated with the seeds of cucurbits. Universal journal of agricultural research. 1(1), 1–8. https://doi.org/10.13189/ujar.2013.010101.

  • Shirai, Y., 1955. The decomposition of l-tyrosine by tubercle bacilli (a further study); the formation of N-acetyltyramine, a new compound, from tyramine by tubercle bacilli. Kekkaku:[Tuberculosis]. 30(11), 628–630.

  • Sowani, H., Kulkarni, M., & Zinjarde, S. (2018). An insight into the ecology, diversity and adaptations of Gordonia species. Critical Reviews in Microbiology., 44(4), 393–413. https://doi.org/10.1080/1040841X.2017.1418286

    Article  CAS  PubMed  Google Scholar 

  • Stark, C. H., Hill, R. A., Cummings, N. J., & Li, J. H. (2018). Amendment with biocontrol strains increases Trichoderma numbers in mature kiwifruit (Actinidia chinensis) orchard soils for up to six months after application. Archives of Phytopathology and Plant Protection., 51(1–2), 54–69. https://doi.org/10.1080/03235408.2018.1438818

    Article  Google Scholar 

  • Stefani, E., & Loreti, S. (2014). PM 7/120 (1) Pseudomonas syringae pv. actinidiae. https://doi.org/10.1111/epp.12171.

  • Van der Meij, A., Worsley, S. F., Hutchings, M. I., & van Wezel, G. P. (2017). Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiology Reviews., 41(3), 392–416. https://doi.org/10.1093/femsre/fux005

    Article  CAS  PubMed  Google Scholar 

  • Vitorino, I., Albuquerque, L., Wiegand, S., Kallscheuer, N., da Costa, M. S., Lobo-da-Cunha, A., Jogler, C., Lage, O. M. (2020). Alienimonas chondri sp. Nov., a novel planctomycete isolated from the biofilm of the red alga Chondrus crispus. Systematic and applied microbiology, 43(3), 126083. https://doi.org/10.1016/j.syapm.2020.126083.

  • Wicaksono, W. A., Jones, E. E., Casonato, S., Monk, J., & Ridgway, H. J. (2018). Biological control of Pseudomonas syringae pv. actinidiae (Psa), the causal agent of bacterial canker of kiwifruit, using endophytic bacteria recovered from a medicinal plant. Biological Control., 116, 103–112. https://doi.org/10.1016/j.biocontrol.2017.03.003

    Article  Google Scholar 

  • Youssef, N. H., & Elshahed, M. S., 2014. The phylum Planctomycetes. The prokaryotes. Berlin, Heidelberg: Springer. 759–810. https://doi.org/10.1007/978-3-642-38954-2_155.

  • Zhang, S., Fu, Y., Mersha, Z., & Pernezny, K. (2017). Assessment of copper resistance in Pseudomonas syringae pv. phaseolicola, the pathogen of halo blight on snap bean. Crop Protection., 98, 8–15. https://doi.org/10.1016/j.cropro.2017.03.009

    Article  CAS  Google Scholar 

  • Zhang, Y., Xu, Y., Chen, L., Hu, J., Zhang, X., Fang, W., ... & **ao, Y., 2016. Isolation, identification and structural characterization of secondary metabolites from amarine sponge-derived rare actinobacterium Dermacoccus sp. X4. Sheng wu gong cheng xue bao= Chinese Journal of Biotechnology, 32(5), 599–609. https://doi.org/10.13345/j.cjb.150391.

Download references

Acknowledgements

This research was partially supported by the Strategic Funding UID/Multi/04423/2019 through national funds provided by FCT—Foundation for Science and Technology and European Regional Development Fund (ERDF), in the framework of the programme PT2020. FCT supported the PhD grant of NMP (SFRH/BD/138187/2018). GesPSA Kiwi: GesPSA Kiwi-Ferramenta Operacional para gestão sustentável do cancro bacteriano (Psa) da Actinídea-NORTE-01-0247-FEDER-033647, project funded by Fundo Europeu de Desenvolvimento Regional (FEDER) through Programa Operacional Regional do Norte (NORTE2020).

Funding

Fundação para a Ciência e a Tecnologia, UIDB/50006/2020, SFRH/BD/138187/2018 (Nuno Ponte’s PhD grant), European Regional Development Fund, UID/Multi/04423/2019, NORTE-01-0247-FEDER-033647.

Author information

Authors and Affiliations

Authors

Contributions

NMP, OL and CS designed the project. Phenotypic characterization for Pseudomonas spp. virulence traits was equally done by EG and NMP, also supported on work of LM and FT. Assays of growth inhibition and chemical analysis were performed by EG, JS, IV, and also supported by JM and FR. EG wrote the manuscript with the support of all authors.

Corresponding authors

Correspondence to Nuno Mariz-Ponte or Olga Maria Lage.

Ethics declarations

Conflicts of interest

Authors declare no conflict of interests.

Ethical statement

The authors declare compliance with all ethical requirements underlying this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gimranov, E., Santos, J.D.N., Vitorino, I. et al. Marine bacterial activity against phytopathogenic Pseudomonas show high efficiency of Planctomycetes extracts. Eur J Plant Pathol 162, 843–854 (2022). https://doi.org/10.1007/s10658-021-02441-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-021-02441-2

Keywords

Navigation