Log in

Rutin promoted resistance of tomato against Xanthomonas perforans

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Xanthomonas perforans is the causal agent of bacterial spot, one of the most devastating diseases of tomato that results in considerable yield losses worldwide. Rutin, as a polyphenolic substance, was used to induce resistance in tomato against X. perforans. Rutin at concentration of 2 mM had ability to reduce the disease severity of bacterial spot. On the other hand, 2 mM rutin had no antibacterial activity in vitro. Expression profiling of pathogenesis-related gene 5 (PR-5), Phenylalanine ammonia-lyase (PAL) and lipoxygenase (LOX) was probed during the enhanced resistance by rutin. Pretreatment with rutin (rutin/ X. perforans) led to induction of PR-5, PAL and LOX compared to controls (water/ X. perforans). Our results suggest that rutin-induced resistance against X. perforans in tomato might be mediated through stimulation of some defense genes such as PR-5, PAL and LOX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Aime, S., Alabouvette, C., Steinberg, C., & Olivain, C. (2013). The endophytic strain Fusarium oxysporum Fo47: A good candidate for priming the defense responses in tomato roots. Molecular Plant-Microbe Interactions, 26, 918–926.

    Article  CAS  PubMed  Google Scholar 

  • Araujo, E. R., Pereira, R. C., Ferreira, M., Café, A. C., Moita, A. W., & Quezado-Duval, A. M. (2011). Effect of temperature on pathogenicity components of tomato bacterial spot and competition between Xanthomonas perforans and X. gardneri. In: Crescenzi A. (eds). III International Symposium on Tomato Diseases, 914, 39–42.

  • Brash, A. R. (1999). Lipoxygenases: Occurrence, functions, catalysis, and acquisition of substrate. Journal of Biological Chemistry, 274, 23679–23682.

    Article  CAS  PubMed  Google Scholar 

  • Cushnie, T. P., & Lamb, A. J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26, 343–356.

    Article  CAS  PubMed  Google Scholar 

  • Dixon, R. A., & Paiva, N. L. (1995). Stress-induced phenylpropanoid metabolism. Plant Cell, 7, 1085–1097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebrahim, S., Usha, K., & Singh, B. (2011). Pathogenesis related (PR) proteins in plant defense mechanism. Science Against Microbial Pathogens, 2, 1043–1054.

    Google Scholar 

  • Flors, V., Leyva, M. O., Vicedo, B., Finiti, I., Real, M. D., García-Agustín, P., Bennett, A. B., & González-Bosch, C. (2007). Absence of the endo-a-1,4-glucanases Cel1 and Cel2 reduces susceptibility to Botrytis cinerea in tomato. The Plant Journal, 52, 1027–1040.

    Article  CAS  PubMed  Google Scholar 

  • Guo, R., Wei, P., & Liu, W. (2007). Combined antioxidant effects of rutin and vitamin C in triton X-100 micelles. Journal of Pharmaceutical and Biomedical Analysis, 43, 1580–1586.

    Article  CAS  PubMed  Google Scholar 

  • Horsfall, J. G., & Barratt, R. W. (1945). An improved grading system for measuring plant diseases. Phytopathology, 35, 655.

    Google Scholar 

  • Jalloul, A., Montillet, J. L., Assigbetse, K., Agnel, J. P., Delannoy, E., Triantaphylides, C., Daniel, J. F., Marmey, P., Geiger, J. P., & Nicole, L. (2002). Lipid peroxidation in cotton: Xanthomonas interactions and the role of lipoxygenases during the hypersensitive reaction. The Plant Journal, 32, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Jia, Z., Zou, B., Wang, X., Qiu, J., Ma, H., Gou, Z., Song, S., & Dong, H. (2010). Quercetin-induced H2O2 mediates the pathogen resistance against Pseudomonas syringae pv. tomato DC3000 in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 396, 522–552.

    Article  CAS  PubMed  Google Scholar 

  • Jones, J. B., Lacy, G. H., Bouzar, H., Stall, R. E., & Schaad, N. W. (2004). Reclassification of the xanthomonads associated with bacterial spot disease of tomato and pepper. Systematic and Applied Microbiology, 27, 755–762.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S. A., Kumari, P. H., Kumar, G. S., Mohanalatha, C., & Kishor, P. K. (2015). Osmotin: A plant sentinel and a possible agonist of mammalian adiponectin. Frontiers in Plant Science, 6, 163.

    Google Scholar 

  • Liu, J. J., Sturrock, R., & Ekramoddoullah, A. K. M. (2010). The superfamily of thaumatin-like proteins: Its origin, evolution, and expression towards biological function. Plant Cell Reports, 29, 419–436.

    Article  CAS  PubMed  Google Scholar 

  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Maddox, C. E., Laur, L. M., & Tian, L. (2010). Antibacterial activity of phenolic compounds against the phytopathogen Xylella fastidiosa. Current Microbiology, 60, 53–58.

    Article  CAS  PubMed  Google Scholar 

  • Murakami, S., Muramatsu, M., & Tomisawa, K. (1999). Inhibition of gastric H+, K+-ATPase by flavonoids: A structure activity study. Journal of Enzyme Inhibition, 14, 151–166.

    Article  CAS  PubMed  Google Scholar 

  • Osdaghi, E., Taghavi, S. M., Hamzehzarghani, H., Fazliarab, A., & Lamichhane, J. R. (2017). Monitoring the occurrence of tomato bacterial spot and range of the causal agent Xanthomonas perforans in Iran. Plant Pathology, 66, 990–1002.

    Article  CAS  Google Scholar 

  • Safaie Farahani & Taghavi (2016). Profiling expression of lipoxygenase in cucumber during compatible and incompatible plant-pathogen interactions. Physiology and Molecular Biology of Plants, 22, 175–177.

  • Scalschi, L., Vicedo, B., Camañes, G., Fernandez-Crespo, E., Lapeña, L., González-Bosch, C., & García-Agustín, P. (2013). Hexanoic acid is a resistance inducer that protects tomato plants against Pseudomonas syringae by priming the jasmonic acid and salicylic acid pathways. Molecular Plant Pathology, 14, 342–355.

    Article  CAS  PubMed  Google Scholar 

  • Schaad, N. W., Jones, J. B., & Chun, W. (2001). Laboratory guide for identification of plant pathogenic bacteria (3rd ed.). St. Paul: APS 379 pp.

    Google Scholar 

  • Skadhauge, B., Thomsen, K., & von Wettstein, D. (1997). The role of barley testa layer and its flavonoid content in resistance to fusarium infections. Hereditas, 126, 147–160.

    Article  CAS  Google Scholar 

  • Sticher, L., Mauch-Mani, B., & Metraux, J. P. (1997). Systemic acquired resistance. Annual Review of Phytopathology, 35, 235–270.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, T., Honda, Y., & Mukasa, Y. (2005). Effects of UV-B radiation, cold and desiccation stress on rutin concentration and rutin glucosidase activity in tartary buckwheat (Fagopyrum tataricum) leaves. Plant Science, 168, 1303–1307.

    Article  CAS  Google Scholar 

  • Suzuki, T., Morishita, T., Kim, S., Park, S., Woo, S., Noda, T., & Takigawa, S. (2015). Physiological roles of rutin in the buckwheat plant. Japan Agricultural Research Quarterly, 49, 37–43.

    Article  Google Scholar 

  • Taguri, T., Tanaka, T., & Kouno, I. (2006). Antibacterial spectrum of plant polyphenols and extracts depending upon hydroxyphenyl structure. Biological and Pharmaceutical Bulletin, 29, 2226–2235.

    Article  CAS  PubMed  Google Scholar 

  • Treutter, D. (2005). Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biology, 7, 581–591.

    Article  CAS  PubMed  Google Scholar 

  • Yang, W., Sacks, E. J., Ivey, M. L., Miller, S. A., & Francis, D. M. (2005). Resistance in Lycopersicon esculentum intraspeciflc crosses to race T1 strains of Xanthomonas campestris pv. vesicatoria causing bacterial spot of tomato. Phytopathology, 95, 519–527.

    Article  CAS  PubMed  Google Scholar 

  • Yang, W., Xu, X., Li, Y., Wang, Y., Li, M., Wang, Y., Ding, X., & Chu, Z. (2016). Rutin-mediated priming of plant resistance to three bacterial pathogens initiating the early SA signal pathway. PLoS One, 11, e0146910.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by Shiraz University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mohsen Taghavi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safaie Farahani, A., Taghavi, S. Rutin promoted resistance of tomato against Xanthomonas perforans . Eur J Plant Pathol 151, 527–531 (2018). https://doi.org/10.1007/s10658-017-1374-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1374-7

Keywords

Navigation