Log in

Speciation of Zn and Cu in Technosol and evaluation of a sequential extraction procedure using XAS, XRD and SEM–EDX analyses

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Metal speciation, linked directly to bioaccessibility and lability, is a key to be considered when assessing associated human and environmental health risks originated from anthropogenic activities. To identify the Zn and Cu speciation in the highly contaminated, technogenically transformed soils (Technosol) from the impact zone near the industrial sludge reservoirs of chemical plant (Siverskyi Donets River floodplain, southern Russia), the validity of the BCR sequential extraction procedure using the X-ray absorption fine-structure and X-ray powder diffraction (XRD) analyses was examined after each of the three stages. After the removal of exchange and carbonate-bonded Zn and Cu compounds from Technosol (first stage of extraction), the resulting residual soil showed enrichment in a great diversity of metal compounds, primarily with Me–S and Me–O bonds. The number of compounds with a higher solubility decreased at the subsequent stages of extraction. In the residual soil left over after extracting the first and second fractions, the dominant Zn–S bond appeared as würtzite (hexagonal ZnS) that made up more than 50%, while the Cu–S bond was almost completely represented only by chalcocite (Cu2S). The XRD analysis revealed the authigenic minerals of metals with S: sphalerite (cubic ZnS), würtzite (hexagonal ZnS), covellite (CuS) and bornite (Cu5FeS4). The scanning electron microscopy data confirmed that würtzite was the dominant form of Me with sulfur-containing and carbonate-containing minerals. The Zn–S bond was the main component (57%), whereas the Cu–O bond was dominant in the residual fraction (the fraction after the third-stage extraction). The results revealed that the composition of the residual fractions might include some of the most stable and hard-to-recover metal compounds of technogenic origin. Thus, the application of the novel instrumental methods, coupled with the chemical fractionation, revealed the incomplete selectivity of the extractants in the extraction of Zn and Cu in long-term highly contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Acosta, J. A., Gabarrón, M., Faz, A., Martínez-Martínez, S., Zornoza, R., & Arocena, J. M. (2015). Influence of population density on the concentration and speciation of metals in the soil and street dust from urban areas. Chemosphere, 134, 328–337.

    CAS  Google Scholar 

  • Akcay, H., Oguz, A., & Karapire, C. (2003). Study of heavy metal pollution and speciation in Buyak Menderes and Gediz river sediments. Water Research, 37(4), 813–822.

    CAS  Google Scholar 

  • Albertsson, J., Abrahams, S. C., & Kvick, A. (1989). Atomic displacement, anharmonic thermal vibration, expansivity, and pyroelectric coefficient thermal dependences in ZnO. Acta Crystallographica, 45, 34–40.

    Google Scholar 

  • Al-Hwaiti, M. S., Brumsack, H. J., & Schnetger, B. (2015). Fraction distribution and risk assessment of heavy metals in waste clay sediment discharged through the phosphate beneficiation process in Jordan. Environmental Monitoring and Assessment, 187(7), 401.

    Google Scholar 

  • Bauer, T. V., Linnik, V. G., Minkina, T. M., Mandzhieva, S. S., & Nevidomskaya, D. G. (2018). Ecological-geochemical studies of technogenic soils in the flood plain landscapes of the Seversky Donets, Lower Don basin. Geochemistry International, 56(10), 992–1002.

    CAS  Google Scholar 

  • Burachevskaya, M., Minkina, T., Mandzhieva, S., Bauer, T., Chaplygin, V., Zamulina, I., et al. (2019). Study of copper, lead, and zinc speciation in the Haplic Chernozem surrounding coal-fired power plant. Applied Geochemistry, 104, 102–108.

    CAS  Google Scholar 

  • Chernyshov, A. A., Veligzhanin, A. A., & Zubavichus, Y. V. (2009). Structural materials science end-station at the Kurchatov synchrotron radiation source: Recent instrumentation upgrades and experimental results. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment, 603(1–2), 95–98.

    CAS  Google Scholar 

  • Covelo, E. F., Matías, J. M., Vega, F. A., Reigosa, M. J., & Andrade, M. L. (2008). A tree regression analysis of factors determining the sorption and retention of heavy metals by soil. Geoderma, 147, 75–85.

    CAS  Google Scholar 

  • Cuong, D. T., & Obbard, J. P. (2006). Metal speciation in coastal marine sediments from Singapore using a modified BCR-sequential extraction procedure. Applied Geochemistry, 21(8), 1335–1346.

    CAS  Google Scholar 

  • Favorito, J. E., Luxton, T. P., Eick, M. J., & Grossl, P. R. (2017). Selenium speciation in phosphate mine soils and evaluation of a sequential extraction procedure using XAFS. Environmental Pollution, 229, 911–921.

    CAS  Google Scholar 

  • Fernández-Ondoño, E., Bacchetta, G., Lallena, A. M., Navarro, F. B., Ortiz, I., & Jiménez, M. N. (2017). Use of BCR sequential extraction procedures for soils and plant metal transfer predictions in contaminated mine tailings in Sardinia. Journal of Geochemical Exploration, 172, 133–141.

    Google Scholar 

  • Ghayoraneh, M., & Qishlaqi, A. (2017). Concentration, distribution and speciation of toxic metals in soils along a transect around a Zn/Pb smelter in the northwest of Iran. Journal of Geochemical Exploration, 180, 1–14.

    CAS  Google Scholar 

  • ISO 14235. (1998). Soil quality – Determination of organic carbon by sulfochromic oxidation.

  • ISO 10381-1. (2002). Soil quality. Sampling. Part 1. Guidance on the Design of Sampling Programmes.

  • ISO 10390. (2005). Soil quality: Determination of pH.

  • ISO 10693. (1995). Soil quality: Determination of carbonate content—Volumetric method.

  • IUSS Working Group WRB. (2015). World reference base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World soil resources reports, FAO, Rome, issue 106.

  • Jacquat, O., Voegelin, A., & Kretzschmar, R. (2009). Soil properties controlling Zn speciation and fractionation in contaminated soils. Geochimica et Cosmochimica Acta, 73(18), 5256–5272.

    CAS  Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soil and plants. Boca Raton: CRC Press.

    Google Scholar 

  • Kirpichtchikova, T. A., Manceau, A., Spadini, L., Panfili, F., Marcus, M. A., & Jacquet, T. (2006). Speciation and solubility of heavy metals in contaminated soil using X-ray microfluorescence, EXAFS spectroscopy, chemical extraction, and thermodynamic modeling. Geochimica et Cosmochimica Acta, 70(9), 2163–2190.

    CAS  Google Scholar 

  • Klementev, K. V. (2001). Extraction of the fine structure from x-ray absorption spectra. Journal of Physics D: Applied Physics, 34(2), 209.

    CAS  Google Scholar 

  • Ladonin, D. V. (2016). Forms of compounds of heavy metals in technogenically contaminated soils. Dissertation for the degree of Doctor of Biological Sciences, Moscow. (in Russian).

  • Lee, Y. J., Elzinga, E. J., & Reeder, R. J. (2005). Cu (II) adsorption at the calcite–water interface in the presence of natural organic matter: Kinetic studies and molecular-scale characterization. Geochimica et Cosmochimica Acta, 69(1), 49–61.

    CAS  Google Scholar 

  • Leermakers, M., Mbachou, B. E., Husson, A., Lagneau, V., & Descostes, M. (2019). An alternative sequential extraction scheme for the determination of trace elements in ferrihydrite rich sediments. Talanta, 199, 80–88.

    CAS  Google Scholar 

  • Mahanta, M. J., & Bhattacharyya, K. G. (2011). Total concentrations, fractionation and mobility of heavy metals in soils of urban area of Guwahati, India. Environmental Monitoring and Assessment, 173(1–4), 221–240.

    CAS  Google Scholar 

  • Manceau, A., Marcus, M. A., & Tamura, N. (2002). Quantitative speciation of heavy metals in soils and sediments by synchrotron X-ray techniques. Reviews in Mineralogy and Geochemistry, 49(1), 341–428.

    CAS  Google Scholar 

  • Marguí, E., Queralt, I., Carvalho, M. L., & Hidalgo, M. (2007). Assessment of metal availability to vegetation (Betula pendula) in Pb-Zn ore concentrate residues with different features. Environmental Pollution, 145(1), 179–184.

    Google Scholar 

  • Mclean, J. E., & Bledsoe, B. E. (1992). Behaviour of metals in soils. EPA ground water issue. Washington: Environmental Protection Agency, EPA.

    Google Scholar 

  • Minkina, T., Nevidomskaya, D., Bauer, T., Shuvaeva, V., Soldatov, A., Mandzhieva, S., et al. (2018). Determining the speciation of Zn in soils around the sediment ponds of chemical plants by XRD and XAFS spectroscopy and sequential extraction. Science of the Total Environment, 634, 1165–1173.

    CAS  Google Scholar 

  • Minkina, T., Nevidomskaya, D., Burachevskaya, M., Bauer, T., Shuvaeva, V., Soldatov, A., et al. (2019). Possibilities of chemical fractionation and X-ray spectral analysis in estimating the speciation of Cu2+ with soil solid-phase components. Applied Geochemistry, 102, 55–63.

    CAS  Google Scholar 

  • Minkina, T. M., Soldatov, A. V., Motuzova, G. V., Podkovyrina, Y. S., & Nevidomskaya, D. G. (2013). Molecular-structural analysis of the Cu (II) ion in ordinary chernozem: evidence from XANES spectroscopy and methods of molecular dynamics. Doklady Earth Sciences, 449(2), 418–421.

    CAS  Google Scholar 

  • Nannoni, F., Protano, G., & Riccobono, F. (2011). Fractionation and geochemical mobility of heavy elements in soils of a mining area in northern Kosovo. Geoderma, 16, 63–73.

    Google Scholar 

  • Nevidomskaya, D. G., Minkina, T. M., Soldatov, A. V., Shuvaeva, V. A., Zubavichus, Y. V., & Podkovyrina, Y. S. (2016). Comprehensive study of Pb(II) speciation in soil by X-ray absorption spectroscopy (XANES and EXAFS) and sequential fractionation. Journal of Soils and Sediments, 16(4), 1183–1192.

    CAS  Google Scholar 

  • Newville, M. (2001). IFEFFIT: Interactive XAFS analysis and FEFF fitting. Journal of Synchrotron Radiation, 8(2), 322–324.

    CAS  Google Scholar 

  • Nielsen, M. T., Scott-Fordsmand, J. J., Murphy, M. W., & Kristiansen, S. M. (2015). Speciation and solubility of copper along a soil contamination gradient. Journal of Soils and Sediments, 15, 1558–1570.

    CAS  Google Scholar 

  • Panfili, F., Manceau, A., Sarret, G., Spadini, L., Kirpichtchikova, T., Bert, V., et al. (2005). The effect of phytostabilization on Zn speciation in a dredged contaminated sediment using scanning electron microscopy, X-ray fluorescence, EXAFS spectroscopy, and principal components analysis. Geochimica et Cosmochimica Acta, 69(9), 2265–2284.

    CAS  Google Scholar 

  • Pinskii, D. L., & Minkina, T. M. (2013). Regularities of Cu, Pb and Zn adsorption by chernozems of the South of Russia. Eurasian Journal of Soil Science, 2(1), 59–68.

    Google Scholar 

  • Pueyo, M., Rauret, G., Lück, D., Yli-Halla, M., Muntau, H., Quevauviller, P., et al. (2001). Certification of the extractable contents of Cd, Cr, Cu, Ni, Pb and Zn in a freshwater sediment following a collaboratively tested and optimised three-step sequential extraction procedure. Journal of Environmental Monitoring, 3(2), 243–250.

    CAS  Google Scholar 

  • Rajapaksha, A. U., Ahmad, M., Vithanage, M., Kim, K. R., Chang, J. Y., Lee, S. S., et al. (2015). The role of biochar, natural iron oxides, and nanomaterials as soil amendments for immobilizing metals in shooting range soil. Environmental Geochemistry and Health, 37(6), 931–942.

    CAS  Google Scholar 

  • Ramos, L., Hernandez, L. M., & Gonzalez, M. J. (1994). Sequential fractionation of copper, lead, cadmium and zinc in soils from or near Donana National Park. Journal of Environmental Quality, 23(1), 50–57.

    CAS  Google Scholar 

  • Scheinost, A. C., Kretzschmar, R., Pfister, S., & Roberts, D. R. (2002). Combining selective sequential extractions, X-ray absorption spectroscopy, and principal component analysis for quantitative zinc speciation in soil. Environmental Science and Technology, 36(23), 5021–5028.

    CAS  Google Scholar 

  • Schlegel, M. L., Manceau, A., Charlet, L., Chateigner, D., & Hazemann, J. L. (2001). Sorption of metal ions on clay minerals. III. Nucleation and epitaxial growth of Zn phyllosilicate on the edges of hectorite. Geochimica et Cosmochimica Acta, 65(22), 4155–4170.

    CAS  Google Scholar 

  • Shein, E. V. (2009). The particle-size distribution in soils: problems of the methods of study, interpretation of the results, and classification. Eurasian Soil Science, 42(3), 284–291.

    Google Scholar 

  • Strawn, D. G., & Baker, L. L. (2008). Speciation of Cu in a contaminated agricultural soil measured by XAFS, μ-XAFS, and μ-XRF. Environmental Science and Technology, 42(1), 37–42.

    CAS  Google Scholar 

  • Sulkowski, M., & Hirner, A. V. (2006). Element fractionation by sequential extraction in a soil with high carbonate content. Applied Geochemistry, 21(1), 16–28.

    CAS  Google Scholar 

  • Sutherland, R. A. (2010). BCR®-701: A review of 10-years of sequential extraction analyses. Analytica Chimica Acta, 680(1–2), 10–20.

    CAS  Google Scholar 

  • Svetogorov, R. D., Dorovatovskii, P. V., & Lazarenko, V. A. (2020). Belok/XSA diffraction beamline for studying crystalline samples at Kurchatov Synchrotron Radiation Source. Crystal Research and Technologies. https://doi.org/10.1002/crat.201900184.

    Article  Google Scholar 

  • Tack, F. M. G., & Verloo, M. G. (1995). Chemical speciation and fractionation in soil and sediment heavy metal analysis: A review. International Journal of Environmental Analytical Chemistry, 59(2–4), 225–238.

    CAS  Google Scholar 

  • Ure, A. M., Quevauviller, P. H., Muntau, H., & Griepink, B. (1993). Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. International Journal of Environmental Analytical Chemistry, 51(1–4), 135–151.

    CAS  Google Scholar 

  • Vieira, J. S., Botelho, C. M., & Boaventura, R. A. (2009). Trace metal fractionation by the sequential extraction method in sediments from the Lis River (Portugal). Soil and Sediment Contamination, 18(1), 102–119.

    CAS  Google Scholar 

  • Vinogradov, F. P. (1957). Geochemistry of rare and dispersed elements in soils. Moscow, AN SSSR. (in Russian).

  • Vodyanitskii, Y. N., Minkina, T. M., Kubrin, S. P., Pankratov, D. A., & Fedorenko, A. G. (2019). Common and rare iron, sulfur, and zinc minerals in technogenically contaminated hydromorphic soil from Southern Russia. Environmental Geochemistry and Health, 42(1), 95–108.

    Google Scholar 

  • Voegelin, A., Pfister, S., Scheinost, A. C., Marcus, M. A., & Kretzshmar, R. (2005). Changes in zinc speciation in field soil after contamination with zinc oxide. Environmental Science & Technology, 39(17), 6616–6623.

    CAS  Google Scholar 

  • Voegelin, A., Tokpa, G., Jacquat, O., Barmettler, K., & Kretzshmar, R. (2008). Zinc fractionation in contaminated soils by sequential and single extractions: Influence of soil properties and zinc content. Journal of Environmental Quality, 37, 1190–1200.

    CAS  Google Scholar 

  • **a, K., Bleam, W., & Helmke, P. A. (1997). Studies of the nature of binding sites of first row transition elements bound to aquatic and soil humic substances using X-ray absorption spectroscopy. Geochimica et Cosmochimica Acta, 61(11), 2223–2235.

    CAS  Google Scholar 

  • Yuan, C. G., Shi, J. B., He, B., Liu, J. F., Liang, L. N., & Jiang, G. B. (2004). Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environment International, 30(6), 769–783.

    CAS  Google Scholar 

Download references

Acknowledgements

The research was financially supported by the Ministry of Science and Higher Education of the Russian Federation (No. 0852-2020-0029) and the Russian Foundation for Basic Research (No. 19-34-60041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dina G. Nevidomskaya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nevidomskaya, D.G., Minkina, T.M., Soldatov, A.V. et al. Speciation of Zn and Cu in Technosol and evaluation of a sequential extraction procedure using XAS, XRD and SEM–EDX analyses. Environ Geochem Health 43, 2301–2315 (2021). https://doi.org/10.1007/s10653-020-00693-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00693-1

Keywords

Navigation