Log in

Geochemical behaviors of antimony in mining-affected water environment (Southwest China)

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Antimony (Sb) is a harmful element, and Sb pollution is one of the typical environmental issues in China, meaning that understanding of the geochemical behaviors of Sb is the key to control the fate of environmental Sb pollution. Sb tends to migrate in soluble form in the water–sediment system, but the fate of dissolved Sb is poorly known. Duliujiang river basin, located in southwest China, provided us with a natural aqueous environment to study the transport of Sb because of its unique geological and geographical characteristics. Physicochemical properties (pH, EC, Eh, DO, Flux), trace elements (Sb, As, Sr) and main ions (Ca2+, Mg2+, SO42−) concentrations in mining-impacted waters were measured in order to determine their distribution and migration potential. There are three types of water samples; they are main stream waters (pH of 7.33–8.43), tributary waters (pH of 6.85–9.12) and adit waters with pH values ranging from 7.57 to 9.76, respectively. Results showed that adit waters contained elevated concentrations of Sb reaching up to 13350 µg L−1 from the abandoned Sb mines, and mine wastes contained up to 8792 mg kg−1 Sb from the historical mine dumps are the important sources of Sb pollution in the Duliujiang river basin. Dissolved Sb had strong migration ability in streams, while its attenuation mainly depended on the dilution of tributary water with large flow rate. In the exit section of the Duliujiang river basin, which had only 10 µg L−1 of average Sb concentration. The simple deionized water extraction was designed to investigate the ability of Sb likely to dissolve from the mine wastes. The results indicated that a greater solubility of Sb in alkaline (pH of 7.11–8.16) than in acid (pH of 3.03–4.45) mine wastes, suggesting that mine wastes contained high Sb concentrations, could release Sb into solution in the natural river waters. Furthermore, the fate of Sb pollution depends on the comprehensive treatment of abandoned adit waters and mine wastes in the upper reaches of the drainage basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anawar, H. M., Freitas, M. C., Canha, N., & Regina, S. (2011). Arsenic, antimony, and other trace element contamination in a mine tailings affected area and uptake by tolerant plant species. Environmental Geochemistry and Health,33, 353–362.

    CAS  Google Scholar 

  • Asaoka, S., Takahashi, Y., Araki, Y., & Tanimizu, M. (2012). Comparison of antimony and arsenic behavior in an Ichinokawa River water–sediment system. Chemical Geology,334, 1–8.

    CAS  Google Scholar 

  • Ashley, P. M., Craw, D., Graham, B. P., & Chappell, D. A. (2003). Environmental mobility of antimony around mesothermal stibnite deposits, New South Wales, Australia and southern New Zealand. Journal of Geochemical Exploration,77, 1–14.

    CAS  Google Scholar 

  • Casiot, C., Ujevic, M., Munoz, M., Seidel, J. L., & Elbaz-Poulichet, F. (2007). Antimony and arsenic mobility in a creek draining an antimony mine abandoned 85 years ago (upper Orb basin, France). Applied Geochemistry,22, 788–798.

    CAS  Google Scholar 

  • Chen, G., Du, H., Zhang, S., & Huang, G. (1991). A preliminary study of geological features and ore-forming geological conditions of the Sb-ore deposit in Bameng of Rongjiang County, Guizhou. Guizhou Geology,8(4), 302–312. (in Chinese).

    Google Scholar 

  • Cidu, R., Biddau, R., Dore, E., Vacca, A., & Marini, L. (2014). Antimony in the soil–water–plant system at the Su Suergiu abandoned mine (Sardinia, Italy): Strategies to mitigate contamination. Science of the Total Environment,497–498, 319–331.

    Google Scholar 

  • Council of the European Communities. (1976). Council Directive 76/464/EEC of 4 May 1976 on pollution caused by certain dangerous substances discharged into the aquatic environment of the Community. Official Journal L 129, 18/05/1976, 23–29.

  • Cui, Y., **, S., & Wang, X. (1995). Metallogenic conditions and prospecting criteria of Sb deposit in Dushan area of Guizhou. Geology and Prospecting,31(3), 24–30. (in Chinese).

    Google Scholar 

  • Ding, J. H., Yang, Y. H., & Deng, F. (2013). Resource potential and metallogenic prognosis of antimony deposits in China. Geology in China,3, 846–858. (in Chinese).

    Google Scholar 

  • Ettler, V., Mihaljevic, M., Šebek, O., & Nechutný, Z. (2007). Antimony availability in highly polluted soils and sediments—A comparison of single extractions. Chemosphere,68, 455–463.

    CAS  Google Scholar 

  • Fawcett, S., Jamieson, H., Nordstrom, D., & McCleskey, R. (2015). Arsenic and antimony geochemistry of mine wastes, associated waters and sediments at the Giant Mine, Yellowknife, Northwest Territories, Canada. Applied Geochemistry,62, 3–17.

    CAS  Google Scholar 

  • Filella, M., Belzile, N., & Chen, Y. W. (2002). Antimony in the environment: a review focused on natural waters I. Occurrence. Earth-Science Reviews,57, 125–176.

    CAS  Google Scholar 

  • Flynn, H. C., Meharg, A. A., Bowyer, P. K., & Paton, G. I. (2003). Antimony bioavailability in mine soil. Environmental Pollution,124, 93–100.

    CAS  Google Scholar 

  • Fu, Z. Y., Wu, F. C., Mo, C.-L., Deng, Q. J., Meng, W., & Giesy, J. P. (2016). Comparison of arsenic and antimony biogeochemical behavior in water, soil and tailings from **kuangshan, China. Science of the Total Environment,539, 97–104.

    CAS  Google Scholar 

  • Gil-Díaz, T., Schäfer, J., Coynel, A., Bossy, C., Dutruch, L., & Blanc, G. (2018). Antimony in the Lot-Garonne river system: A 14-year record of solid–liquid partitioning and fluxes. Environmental Chemistry,2018(15), 121–136.

    Google Scholar 

  • Glöser, S., Espinoza, L. T., Gandenberger, C., & Faulstich, M. (2015). Raw material criticality in the context of classical risk assessment. Resources Policy,44, 35–46.

    Google Scholar 

  • Guo, W. J., Fu, Z. Y., Wang, H., Song, F. H., Wu, F. C., & Giesy, J. P. (2018). Environmental geochemical and spatial/temporal behavior of total and speciation of antimony in typical contaminated aquatic environment from **kuangshan, China. Microchemical Journal,137, 181–189.

    CAS  Google Scholar 

  • He, M. C. (2007). Distribution and phytoavailability of antimony at an antimony mining and smelting area, Hunan, China. Environmental Geochemistry and Health,29(3), 209–219.

    CAS  Google Scholar 

  • He, M. C., Wang, N. N., Long, X. J., Zhang, C. J., Ma, C. L., Zhong, Q. Y., et al. (2018). Antimony speciation in the environment: Recent advances in understanding the biogeochemical processes and ecological effects. Journal of Environmental Sciences. https://doi.org/10.1016/j.jes.2018.05.023.

    Article  Google Scholar 

  • He, M. C., Wang, X. Q., Wu, F. C., & Fu, Z. Y. (2012). Antimony pollution in China. Science of the Total Environment,421–422, 41–50.

    Google Scholar 

  • Heikkinen, P. M., Räisänen, M. L., & Johnson, R. H. (2009). Geochemical characterisation of seepage and drainage water quality from two sulphide mine tailings impoundments: Acid mine drainage versus neutral mine drainage. Mine Water and the Environment,28, 30–49.

    CAS  Google Scholar 

  • Herath, I., Vithanage, M., & Bundschuh, J. (2017). Antimony as a global dilemma: Geochemistry, mobility, fate and transport. Environmental Pollution,223, 545–559.

    CAS  Google Scholar 

  • Hiller, E., Lalinská, B., Chovan, M., Jurkovič, L., Klimko, T., Jankulár, M., et al. (2012). Arsenic and antimony contamination of waters, stream sediments and soils in the vicinity of abandoned antimony mines in the Western Carpathians, Slovakia. Applied Geochemistry,27, 598–614.

    CAS  Google Scholar 

  • Hockmann, K., & Schulin, R. (2012). Leaching of antimony from contaminated soils. In H. Magdi Selim (Ed.), Competitive sorption and transport of heavy metals in soil and geological media (vol. 121). CRC Press.

  • Hu, X., He, M., Li, S., & Guo, X. (2017a). The leaching characteristics and changes in the leached layer of antimony-bearing ores from China. Journal of Geochemical Exploration,176, 76–84.

    CAS  Google Scholar 

  • Hu, X. Y., He, M. C., Li, S. S., & Guo, X. J. (2017b). The leaching characteristics and changes in the leached layer of antimony-bearing ores from China. Journal of Geochemical Exploration,176, 76–84.

    CAS  Google Scholar 

  • Li, L., Liu, H., & Li, H. X. (2018). Distribution and migration of antimony and other trace elements in a Karstic river system, Southwest China. Environmental Science and Pollution Research,25(28), 28061–28074.

    CAS  Google Scholar 

  • Li, X., Yang, H., Zhang, C., Zeng, G., Liu, Y., Xu, W., et al. (2017). Spatial distribution and transport characteristics of heavy metals around an antimony mine area in central China. Chemosphere,170, 17–24.

    CAS  Google Scholar 

  • Lindsay, M. B. J., Condon, P. D., Jambor, J. L., Lear, K. G., Blowes, D. W., & Ptacek, C. J. (2009). Mineralogical, geochemical, and microbial investigation of a sulfide-rich tailings deposit characterized by neutral drainage. Applied Geochemistry,24, 2212–2221.

    CAS  Google Scholar 

  • Liu, Y. J., Cao, L. M., & Li, Z. L. (1984). Element geochemistry (Vol. 365). Bei**g: Science in China Press. (in Chinese).

    Google Scholar 

  • Liu, F., Le, X. C., McKnight-Whitford, A., **a, Y. L., Wu, F. C., Elswick, E., et al. (2010). Antimony speciation and contamination of waters in the **kuangshan antimony mining and smelting area, China. Environmental Geochemistry and Health,32, 401–413.

    CAS  Google Scholar 

  • Liu, C.-Q., Zhao, Z. Q., Tao, F. X., Han, G. L., Jiang, Y. K., & Xu, Z. F. (2007). Geochemistry of Karst River Water and Basin Geology and Ecological Environment. In: Biogeochemistry Processes and Surface-Earth Materials Cycling-Erosion and Biological Nutrients Cycling in Karstic Catchments, Southwest China (pp. 148). Science in China Press (in Chinese).

  • Luo, Y., Huang, Z., **ao, X., & Ding, W. (2014). Contents of ore-forming elements and geological significance of Dushan antimony ore field, Guizhou Province, China. Acta Mineralogica Sinica,34(2), 247–253. (in Chinese).

    CAS  Google Scholar 

  • Macgregor, K., MacKinnon, G., Farmer, J., & Graham, M. (2015). Mobility of antimony, arsenic and lead at a former antimony mine, Glendinning, Scotland. Science of the Total Environment,529, 213–222.

    CAS  Google Scholar 

  • Masson, M., Schäfer, J., Blanc, G., Dabrin, A., Castelle, S., & Lavaux, G. (2009). Behavior of arsenic and antimony in the surface freshwater reaches of a highly turbid estuary, the Gironde Estuary, France. Applied Geochemistry,24(9), 1747–1756.

    CAS  Google Scholar 

  • Mykolenko, S., Liedienov, V., Kharytonov, M., Makieieva, N., Kuliush, T., Queralt, I., et al. (2018). Presence, mobility and bioavailability of toxic metal(oids) in soil, vegetation and water around a Pb–Sb recycling factory (Barcelona, Spain). Environmental Pollution,237, 569–580.

    CAS  Google Scholar 

  • Nyirenda, T., Zhou, J., **e, L., Pan, X., & Li, Y. (2015). Determination of carbonate minerals responsible for alkaline mine drainage at **kuangshan antimony mine, China: Using thermodynamic chemical equilibrium model. Journal of Earth Science,26, 755–762.

    CAS  Google Scholar 

  • Ren, B., Wang, C., Ma, H., Deng, R., & Zhang, P. (2016). Effect to rainfall on Sb release characteristics from smelting slag in rainy south China. Fresenius Environmental Bulletin,25, 4908–4914.

    CAS  Google Scholar 

  • Ritchie, V. J., Ilgen, A. G., Mueller, S. H., Trainor, T. P., & Goldfarb, R. J. (2013). Mobility and chemical fate of antimony and arsenic in historic mining environments of the Kantishna Hills district, Denali National Park and Preserve, Alaska. Chemical Geology,335, 172–188.

    CAS  Google Scholar 

  • Sharifi, R., Moore, F., & Keshavarzi, B. (2016). Mobility and chemical fate of arsenic and antimony in water and sediments of Sarouq River catchment, Takab geothermal field, northwest Iran. Journal of Environmental Management,170, 136–144.

    CAS  Google Scholar 

  • Shotyk, W., Krachler, M., & Chen, B. (2005). Antimony: Global environmental contaminant. Journal of Environmental Monitoring,7, 1135–1136.

    CAS  Google Scholar 

  • Sun, W. M., **ao, E. Z., Dong, Y. R., Tang, S., Krumins, V., Ning, Z. P., et al. (2016a). Profiling microbial community in a watershed heavily contaminated by an active antimony (Sb) mine in Southwest China. Science of the Total Environment,550, 297–308.

    CAS  Google Scholar 

  • Sun, W. M., **ao, E. Z., Kalin, M., Krumins, V., Dong, Y. R., Ning, Z. P., et al. (2016b). Remediation of antimony-rich mine waters: Assessment of antimony removal and shifts in the microbial community of an onsite field-scale bioreactor. Environmental Pollution,215, 213–222.

    CAS  Google Scholar 

  • Tan, D., Long, J., Li, B., Ding, D., Du, H., & Lei, M. (2018). Fraction and mobility of antimony and arsenic in three polluted soils: A comparison of single extraction and sequential extraction. Chemosphere,213, 533–540.

    CAS  Google Scholar 

  • United States Environmental Protection Agency. (1979). Water Related Fate of the 129 Priority Pollutants (Vol. 1). USEPA, Washington, DC, USA, EP-440/4-79-029A.

  • U.S. Geological Survey (USGS). (2018). Mineral Commodity Summaries. Antimony. Statistics and Information. https://minerals.usgs.gov/minerals/pubs/commodity/antimony/mcs-2018-antim.pdf. Accessed Jan 2018.

  • Wang, Y. L., Chen, Y. C., Wang, D. H., Xu, J., Chen, Z. H., & Liang, T. (2013). The principal antimony concentration areas in China and their resource potentials. Geology in China,5, 1366–1378. (in Chinese).

    Google Scholar 

  • Wang, X. Q., He, M. C., **, J. H., & Lu, X. (2011). Antimony distribution and mobility in rivers around the world’s largest antimony mine of **kuangshan, Hunan Province, China. Microchemical Journal,97, 4–11.

    CAS  Google Scholar 

  • Wen, B., Zhou, J. W., Zhou, A. G., Liu, C. F., & **e, L. (2016). Sources, migration and transformation of antimony contamination in the water environment of **kuangshan, China: Evidence from geochemical and stable isotope (S, Sr) signatures. Science of the Total Environment,569–570, 114–122.

    Google Scholar 

  • Wilson, S. C., Lockwood, P. V., Ashley, P. M., & Tighe, M. (2010). The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: A critical review. Environmental Pollution,158, 1169–1181.

    CAS  Google Scholar 

  • **ao, E. Z., Krumins, V., Tang, S., **ao, T. F., Ning, Z. P., Lan, X. L., et al. (2016). Correlating microbial community profiles with geochemical conditions in a watershed heavily contaminated by an antimony tailing pond. Environmental Pollution,215, 141–153.

    CAS  Google Scholar 

  • Yang, H. L., He, M. C., & Wang, X. Q. (2015). Concentration and speciation of antimony and arsenic in soil profiles around the world’s largest antimony metallurgical area in China. Environmental Geochemistry and Health,37, 21–33.

    CAS  Google Scholar 

  • Zhang, Z. X., Lu, Y., Li, H. P., Tu, Y., Liu, B. Y., & Yang, Z. G. (2018). Assessment of heavy metal contamination, distribution and source identification in the sediments from the Zijiang River, China. Science of the Total Environment,645, 235–243.

    CAS  Google Scholar 

  • Zhou, J. W., Nyirenda, M. T., **e, L., Li, Y., Zhou, B. L., Zhu, Y., et al. (2017). Mine waste acidic potential and distribution of antimony and arsenic in waters of the **kuangshan mine, China. Applied Geochemistry,77, 52–61.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. U1612442, 41401568) and the Project of Science and Technology Department of Guizhou Province (RENCAI[2016]5664; [2016]ZHICHENG2835). The authors would like to acknowledge the Environmental Protection Bureau of Qiannan and the Environmental Protection Bureau of Qiandongnan, Guizhou Province, for the routine monitoring data of cross section provided to this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling Li or Pan Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 409 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Tu, H., Zhang, S. et al. Geochemical behaviors of antimony in mining-affected water environment (Southwest China). Environ Geochem Health 41, 2397–2411 (2019). https://doi.org/10.1007/s10653-019-00285-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-019-00285-8

Keywords

Navigation