Log in

Turbulence Perturbations in the Neutrally Stratified Surface Layer due to the Interaction of a Katabatic Flow with a Steep Ridge

  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

Turbulence measurements were performed in Antarctica, on the Nansen Ice Sheet, dominated by westerly katabatic winds. The measurements were taken at two sites aligned with the katabatic wind fall-line. The measuring stations were located in the middle of a wide, flat iced area at a distance of 14 km from the base of a slo** surface and at the top of a steep ridge (Inexpressible Island). The aim was to investigate the perturbation of turbulence close to the ground generated by the interaction of the flow with the ridge. We present an analysis comparing the data measured at the upstream unperturbed station with those at the top of the obstacle. Moments and spectra of velocity components have been calculated for almost steady periods. The topography and roughness change produce a combined effect on the flow acceleration (of the opposite sign) and on the turbulent stresses (of the same sign). Spectra of velocity components measured at the top of the ridge and scaled by unperturbed quantities evidence an increment of energy in the high frequency subrange with respect to the up-stream flow. Moreover, the horizontal velocity components display a shift in turbulence maximum towards higher frequencies. The vertical velocity spectrum exhibits an energy increment at low frequencies with respect to the upstream spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.A. Taylor P.J. Mason E.F. Bradley (1987) ArticleTitleBoundary layer flow over low hills Boundary- Layer Meteorol 39 107–132

    Google Scholar 

  2. P. Jackson J. Hunt (1975) ArticleTitleTurbulent wind flow over a low hill Quart. J. Roy. Meteorol. Soc 101 929–955

    Google Scholar 

  3. J. Hunt S. Leibovich K. Richards (1988a) ArticleTitleTurbulent shear flows over low hills Quart. J. Roy. Meteorol. Soc 114 1435–1370

    Google Scholar 

  4. J. Hunt K. Richards P. Brighton (1988b) ArticleTitleStratified shear flow over low hills Quart.J. Roy. Meteorol. Soc 114 859–886

    Google Scholar 

  5. R. Britter J. Hunt K.J. Richards (1981) ArticleTitleAir flow over a two-dimensional hill: Studies of velocity speed-up, roughness effects and turbulence Quart. J. Roy. Meteorol. Soc 107 91–110

    Google Scholar 

  6. J.L. Walmsley P.A. Taylor T. Keith (1986) ArticleTitleA simple model of neutrally stratified boundary layer flow over complex terrain with surface roughness modulations (MS3DJH/3R) Boundary-Layer Meteorol 36 157–186

    Google Scholar 

  7. J.L. Walmsley I.B. Troen D.P. Lalas P.J. Mason (1990) ArticleTitleSurface layer flow in complex terrain: comparison of models and full scale observations Boundary-Layer Meteorol 52 259–281

    Google Scholar 

  8. D. Xu K.W. Ayotte P.A. Taylor (1994) ArticleTitleDevelopment of a non-linear mixed spectral finite difference model for flow over topography Boundary-Layer Meteorol 70 341–367

    Google Scholar 

  9. Di Sabatino, S., Tammelin, B., Trombetti, F. and Tampieri, F.: 1997, The vertical structure of the stable boundary layer over small topographic features. In: G. Solari (ed.), Proceedings of the 2nd European and African Conference on wind engineering, Genova, pp. 237–244, SGE.

  10. P. Mason R. Sykes (1979) ArticleTitleFlow over an isolated fill of moderate slope Quart. J. Roy. Meteorol. Soc 105 383–395

    Google Scholar 

  11. G. Jenkins P. Mason W. Moores R.I. Sykes (1981) ArticleTitleMeasurements of the flow structure around Ailsa Craig, a steep, three-dimensional, isolated hill Quart. J. Roy. Meteorol. Soc 107 833–851

    Google Scholar 

  12. E. Bradley (1980) ArticleTitleAn experimental study of the profiles of wind speed, shearing stress and turbulence at the crest of a large hill Quart. J. R. Meteorol. Soc 106 101–123

    Google Scholar 

  13. T. Hauf G. Neumann-Hauf (1982) ArticleTitleThe turbulent wind flow over an embankment Boundary-Layer Meteorol 24 357–370

    Google Scholar 

  14. Taylor P. and Teunissen H.(1985). The Askervein Hill Project; Report on the September/ October 1983 Main Field Experiment, Technical Report MSRB-84-6, Atmospheric Enviroment Service. Downsview, Canada.

  15. Mickle R., Salmon J. and Taylor P.(1984), Kettles hill 1984: Velocity Profile Measurements over a Low Hill, Technical Report AQRB-84-012-L, Atmospheric Environment Service, Downsview, Canada. isolated hill of moderate slope, Quart. J. Roy. Meteorol. Soc. 111, 617-640.

  16. P. Mason J. King (1985) Measurements and predictions of flow and turbulence over an vironment Service Downsview Canada

    Google Scholar 

  17. P. Mason (1986) ArticleTitleFlow over the summit of an isolated hill Boundary-Layer Meteorol 37 385–405

    Google Scholar 

  18. M. Gallagher T. Choularton M. Hill (1988) ArticleTitleSome observations of airflow over a large hill of moderate slope Boundary-Layer Meteorol 42 229–250

    Google Scholar 

  19. H. Frank K. Heldt S. Emeis F. Fiedler (1993) ArticleTitleFlow over an embankment: Speed-up and pressure perturbation Boundary-Layer Meteorol 63 163–182

    Google Scholar 

  20. P. Coppin E. Bradley J. Finnigan (1994) ArticleTitleMeasurements of flow over an elongated ridge and its thermal-stability dependence–The mean-field Boundary-Layer Meteorol 69 173–199

    Google Scholar 

  21. S. Emeis H. Frank F. Fiedler (1995) ArticleTitleModification of air-flow over an escarpment–Results from the Hjardemal experiment Boundary-Layer Meteorol 74 131–161

    Google Scholar 

  22. D. Founda M. Tombrou D. Lalas D. Asimakopoulos (1997) ArticleTitleSome measurements of turbulence characteristics over complex terrain Boundary-Layer Meteorol 83 221–245

    Google Scholar 

  23. J.D. Holmes R.W. Banks P. Paevere (1997) ArticleTitleMeasurements of topographic multipliers and flow separation from a steep escarpment, Part I. Full scale measurements J. Wind Eng. Ind. Aerodyn 69-71 885–892

    Google Scholar 

  24. A. Bowen D. Lindley (1977) ArticleTitleA wind-tunnel investigation of the wind speed and turbulence characteristics close to the ground over various escarpment shapes Boundary-Layer Meteorol 12 259–271

    Google Scholar 

  25. Khurshudyan, L.H., Snyder, W.H. and Nekrasov, I.V.: 1981, Flow and Dispersion of Pollutants over Two-Dimensional Hills: Summary Report on Joint Soviet-American Study, Technical Report EPA-600/4-81-067. Res. Tri. Pk., NC.

  26. J. Pearse D. Lindley D. Stevenson (1981) ArticleTitleWind flow over ridges in simulated atmospheric boundary layers Boundary-Layer Meteorol 21 77–92

    Google Scholar 

  27. W. Gong A. Ibbetson (1989) ArticleTitleA wind tunnel study of turbulent flow over model hills Boundary-Layer Meteorol 49 113–148

    Google Scholar 

  28. J. Finnigan M. Raupach E. Bradley G. Aldis (1990) ArticleTitleA wind tunnel study of turbulent flow over a two-dimensional ridge Boundary-Layer Meteorol 50 277–317

    Google Scholar 

  29. H. Kim C. Lee H. Lim N. Kyong (1997) ArticleTitleAn experimental and numerical study on the flow over two-dimensional hills J. Wind Eng. Ind. Aerodyn 66 17–33

    Google Scholar 

  30. T. Ishihara K. Hibi S. Oikawa (1999) ArticleTitleA wind tunnel study of turbulent flow over a three-dimensional steep hill J. Wind Eng. Ind. Aerodyn 83 95–107

    Google Scholar 

  31. P. Carpenter N. Locke (1999) ArticleTitleInvestigation of wind speeds over multiple two-dimensional hills J. Wind Eng. Ind. Aerodyn 83 109–120

    Google Scholar 

  32. Bowen, A., Koren, S. and Arad, E.: 1999, Wind tunnel and numerical modelling of the wind flow over parallel 2D ridges. In: A. Larsen, G. Larose and F. Livesey (eds.), Proceedings of The Tenth International Conference on Wind Engineering, Copenhagen, Denmark.

  33. Bortoli, D., Cava, D., Georgiadis, T., Gios- tra, U., Lavagnini, A., Malvestuto, V., Nardino, M., Orsi, G., Sempreviva, A.M., Tagliazucca, M., Transerici, C. and Trivellone, G.: 2000, Preliminary results from an experiment on the interaction of a flow with an orographic relief. In: M. Colacino and G. Giovanelli (eds.), Proceedings Italian Research on Antarctic Atmosphere, Bologna, pp. 203–218, SIF.

  34. R. McMillen (1988) ArticleTitleAn eddy correlation technique with extended applicability to non-simple terrain Boundary-Layer Meteorol 43 231–245

    Google Scholar 

  35. S. Sethuraman R. Meyers R. Brown (1978) ArticleTitleA comparison of a eulerian and a lagrangian scale for over-water atmospheric flows during stable conditions Boundary-Layer Meteorol 14 557–565

    Google Scholar 

  36. E. Bradley R. Antonia (1979) ArticleTitleStructure parameters in the atmospheric surface layer Quart. J. Roy. Meteorol. Soc 105 695–705

    Google Scholar 

  37. B. Kader A. Yaglom (1990) ArticleTitleMean fields and fluctuation moments in unstably stratified turbulent boundary layers J. Fluid Mech 212 637–662 Occurrence HandleMR1051342

    MathSciNet  Google Scholar 

  38. E. Vander Avoird P.G. Duynkerke (1999) ArticleTitleTurbulence in a katabatic flow Boundary-Layer Meteorol 92 39–66

    Google Scholar 

  39. J.C. King (1990) ArticleTitleSome measurements of turbulence over an antarctic ice shelf Quart. J. Roy. Meteorol. Soc 116 379–400

    Google Scholar 

  40. Monin A.S. and Yaglom A.M.(1971). Statistical Fluid Mechanics, MIT Press.

  41. C.J.P.P. Smeets P.G. Duynkerke H.F. Vugts (1998) ArticleTitleTurbulence characteristics of the stable boundary layer over a mid-latitude glacier Part I: A combination of katabatic and large-scale forcing Boundary-Layer Meteorol 87 117–145

    Google Scholar 

  42. D. Anfossi E. Ferrero D. Sacchetti S.T. Castelli (1997) ArticleTitleComparison among empirical probability density functions of the vertical velocity in the surface layer based on higher order correlations Boundary-Layer Meteorol 82 193–218 Occurrence Handle10.1023/A:1000206913196

    Article  Google Scholar 

  43. A. Maurizi F. Tampieri (1999) ArticleTitleVelocity probability density functions in Lagrangian dispersion models for inhomogeneous turbulence Atmos. Environ 33 281–289 Occurrence Handle1:CAS:528:DyaK1MXhvVCrsg%3D%3D

    CAS  Google Scholar 

  44. Tampieri F., Maurizi A. and Alberghi, S.: 2000, Lagrangian models of turbulent dispersion in the atmospheric boundary layer. In: G. Solari, L.C. Pagnini and G. Piccardo (eds.), Ingegneria del Vento in Italia 2000, Genova, pp. 37–49.

  45. J. Kaimal J. Wyngaard Y. Izumi O. Coté (1972) ArticleTitleSpectral characteristics of surface-layer turbulence Quart. J. Roy. Meteorol. Soc 98 563–589

    Google Scholar 

  46. U. Högström J. C. R. Hunt A. Smedman (2002) ArticleTitleTheory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer Boundary-Layer Meteorol 103 101–124 Occurrence Handle10.1023/A:1014579828712

    Article  Google Scholar 

  47. B.A. Kader A.M. Yaglom (1989) Spectra and correlation functions of surface layer turbulence in unstable thermal stratification O. Metais M. Lesieur (Eds) Turbulence and Coherent Structures Kluwer Academic Publishers Dordrecht 388–412

    Google Scholar 

  48. V. Nikora (1999) ArticleTitleOrigin of the“-1” spectral low in wall-bounded turbulence Phys. Rev. Lett 83 734–736 Occurrence Handle1:CAS:528:DyaK1MXkslylsbY%3D

    CAS  Google Scholar 

  49. Schipa, S., Trivellone, G., Cava, D. and Giostra, U.: 2001, Wavelet Analysis of a Topographically Perturbed Air Flow, European Geophysical Society; XXVI GENERAL ASSEMBLY; Nice (France) 25–30 Marzo 2001.

  50. N. Jensen E. Peterson (1978) ArticleTitleOn the escarpment wind profile Quart. J. Roy. Meteorol. Soc 104 719–728

    Google Scholar 

  51. R.B. Stull (1988) An Introduction to Boundary Layer Meteorology Kluwer Academic Publishers Dordrecht

    Google Scholar 

  52. N. Jensen (1978) ArticleTitleChange of surface roughness and the planetary boundary layer Quart. J. Roy. Meteorol. Soc 104 351–356

    Google Scholar 

  53. Panofsky, H.A. and Dutton, J.A.: 1984, Atmospheric Turbulence: Models and Methods for Engineering Applications, Wiley-Interscience.

  54. Hunt, J.C.R., Moin, P., Lee, M., Moser, R.D., Spalart, P., Mansour, N.N., Kaimal, K.C. and Gaynor, E.: 1989, Cross correlation and length scales in turbulent flows near surfaces. In: H.-H. Fernholz and H. Fiedler (eds.), Advances in Turbulence 2, pp. 128–134, Springer-Verlag.

  55. H. Frank (1996) ArticleTitleA simple spectral model for the modification of turbulence in flow over gentle hills Boundary-Layer Meteorol 79 345–373

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mammarella, I., Tampieri, F., Tagliazucca, M. et al. Turbulence Perturbations in the Neutrally Stratified Surface Layer due to the Interaction of a Katabatic Flow with a Steep Ridge. Environ Fluid Mech 5, 227–246 (2005). https://doi.org/10.1007/s10652-004-3268-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-004-3268-4

Keywords

Navigation