Log in

TRIM59 guards ER proteostasis and prevents Bortezomib-mediated colorectal cancer (CRC) cells’ killing

  • Research
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Abstract

The endoplasmic reticulum (ER) is a critical organelle that preserves the protein homeostasis of cells. Under various stress conditions, cells evolve a degree of capacity to maintain ER proteostasis, which is usually augmented in tumor cells, including colorectal cancer (CRC) cells, to bolster their survival and resistance to apoptosis. Bortezomib (BTZ) is a promising drug used in CRC treatment; however, its main limitation result from drug resistance. Here, we identified the role of tripartite motif-containing protein 59 (TRIM59)–a protein localized on the ER membrane– in the prevention of BTZ-mediated CRC killing. Depletion of TRIM59 is associated with the enhancement of ER stress and a remarkable increase in unfolded protein response (UPR) signaling. Besides, TRIM59 strengthens ER-associated degradation (ERAD) and alleviates the generation of ROS. Of note, TRIM59 knockdown synergizes with the anti-cancer effect of BTZ both in vitro and in vivo. Our findings revealed a role for TRIM59 in the ER by guarding ER proteostasis and represents a novel therapeutic target of CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ATF6α:

Activating transcription factor 6 alpha.

BTZ:

Bortezomib.

CHX:

Cycloheximide.

CRC:

Colorectal cancer.

E3s:

Ubiquitin ligases.

ER:

Endoplasmic reticulum.

ERAD:

Endoplasmic reticulum-associated degradation.

H2-DCFDA:

2’, 7’-dichlorodihydrofluorescein-diacetate.

IHC:

Immunohistochemistry.

IRE1:

Inositol-requiring kinase 1.

PERK:

Protein kinase RNA (PKR)-like ER kinase.

ROS:

Reactive oxygen species.

RT:

Room temperature.

TRIMs:

Tripartite motif-containing family proteins.

UPR:

Unfolded protein response.

UPS:

Ubiquitin-proteasome system.

References

  1. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F (2017) Global patterns and trends in colorectal cancer incidence and mortality. Gut 66(4):683–691. DOI: https://doi.org/10.1136/gutjnl-2015-310912

    Article  PubMed  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin 68(6):394–424. DOI: https://doi.org/10.3322/caac.21492

    Article  Google Scholar 

  3. Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB (2019) Colorectal cancer. The Lancet 394(10207):1467–1480. DOI: https://doi.org/10.1016/S0140-6736(19)32319-0

    Article  Google Scholar 

  4. Dobson CM (2003) Protein folding and misfolding. Nature 426(6968):884–890. DOI: https://doi.org/10.1038/nature02261

    Article  CAS  PubMed  Google Scholar 

  5. Liu Y, Ye Y (2011) Proteostasis regulation at the endoplasmic reticulum: a new perturbation site for targeted cancer therapy. Cell Res 21(6):867–883. DOI: https://doi.org/10.1038/cr.2011.75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang L, Afolabi LO, Wan X, Li Y, Chen L (2020) Emerging Roles of Tripartite Motif-Containing Family Proteins (TRIMs) in Eliminating Misfolded Proteins. Front Cell Dev Biology 8(802). DOI: https://doi.org/10.3389/fcell.2020.00802

  7. Ellgaard L, Helenius A (2003) Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4(3):181–191. DOI: https://doi.org/10.1038/nrm1052

    Article  CAS  PubMed  Google Scholar 

  8. Oakes SA, Papa FR (2015) The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol 10:173–194. DOI: https://doi.org/10.1146/annurev-pathol-012513-104649

    Article  CAS  PubMed  Google Scholar 

  9. Urra H, Dufey E, Avril T, Chevet E, Hetz C (2016) Endoplasmic Reticulum Stress and the Hallmarks of Cancer. Trends in Cancer 2(5):252–262. DOI: https://doi.org/10.1016/j.trecan.2016.03.007

    Article  PubMed  Google Scholar 

  10. Wang M, Kaufman RJ (2016) Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 529(7586):326–335. DOI: https://doi.org/10.1038/nature17041

    Article  CAS  PubMed  Google Scholar 

  11. Kane RC, Bross PF, Farrell AT, Pazdur R (2003) Velcade: U.S. FDA approval for the treatment of multiple myeloma progressing on prior therapy. Oncologist 8(6):508–513. DOI: https://doi.org/10.1634/theoncologist.8-6-508

    Article  PubMed  Google Scholar 

  12. Cheah CY, Seymour JF, Wang ML (2016) Mantle Cell Lymphoma. J Clin oncology: official J Am Soc Clin Oncol 34(11):1256–1269. DOI: https://doi.org/10.1200/jco.2015.63.5904

    Article  CAS  Google Scholar 

  13. Cusack JC Jr, Liu R, Houston M, Abendroth K, Elliott PJ, Adams J, Baldwin AS Jr (2001) : Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-kappaB inhibition. Cancer research 61(9):3535–3540. DOI: https://doi.org/No

  14. Obeng EA, Carlson LM, Gutman DM, Harrington WJ, Lee KP, Boise LH (2006) Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 107(12):4907–4916. DOI: https://doi.org/10.1182/blood-2005-08-3531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fribley A, Zeng Q, Wang CY (2004) Proteasome inhibitor PS-341 induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in head and neck squamous cell carcinoma cells. Mol Cell Biol 24(22):9695–9704. DOI: https://doi.org/10.1128/mcb.24.22.9695-9704.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nawrocki ST, Carew JS, Dunner K Jr, Boise LH, Chiao PJ, Huang P, Abbruzzese JL, McConkey DJ (2005) Bortezomib inhibits PKR-like endoplasmic reticulum (ER) kinase and induces apoptosis via ER stress in human pancreatic cancer cells. Cancer Res 65(24):11510–11519. DOI: https://doi.org/10.1158/0008-5472.can-05-2394

    Article  CAS  PubMed  Google Scholar 

  17. Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13(2):89–102. DOI: https://doi.org/10.1038/nrm3270

    Article  CAS  PubMed  Google Scholar 

  18. Qi L, Tsai B, Arvan P (2017) New Insights into the Physiological Role of Endoplasmic Reticulum-Associated Degradation. Trends Cell Biol 27(6):430–440. DOI: https://doi.org/10.1016/j.tcb.2016.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen Y, Brandizzi F (2013) IRE1: ER stress sensor and cell fate executor. Trends Cell Biol 23(11):547–555. DOI: https://doi.org/10.1016/j.tcb.2013.06.005

    Article  CAS  PubMed  Google Scholar 

  20. Haze K, Yoshida H, Yanagi H, Yura T, Mori K (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10(11):3787–3799. DOI: https://doi.org/10.1091/mbc.10.11.3787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397(6716):271–274. DOI: https://doi.org/10.1038/16729

    Article  CAS  PubMed  Google Scholar 

  22. Wu X, Rapoport TA (2018) Mechanistic insights into ER-associated protein degradation. Curr Opin Cell Biol 53:22–28. DOI: https://doi.org/10.1016/j.ceb.2018.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brodsky Jeffrey L (2012) Cleaning Up: ER-Associated Degradation to the Rescue. Cell 151(6):1163–1167. DOI: https://doi.org/10.1016/j.cell.2012.11.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lemus L, Goder V (2014) Regulation of Endoplasmic Reticulum-Associated Protein Degradation (ERAD) by Ubiquitin. Cells 3(3):824–847. DOI: https://doi.org/10.3390/cells3030824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hwang J, Qi L (2018) Quality Control in the Endoplasmic Reticulum: Crosstalk between ERAD and UPR pathways. Trends Biochem Sci 43(8):593–605. DOI: https://doi.org/10.1016/j.tibs.2018.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101(3):249–258. DOI: https://doi.org/10.1016/s0092-8674(00)80835-1

    Article  CAS  PubMed  Google Scholar 

  27. Hatakeyama S (2011) TRIM proteins and cancer. Nat Rev Cancer 11(11):792–804. DOI: https://doi.org/10.1038/nrc3139

    Article  CAS  PubMed  Google Scholar 

  28. Chen L, Zhu G, Johns EM, Yang X (2018) TRIM11 activates the proteasome and promotes overall protein degradation by regulating USP14. Nat Commun 9(1):1223. DOI: https://doi.org/10.1038/s41467-018-03499-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen L, Brewer MD, Guo L, Wang R, Jiang P, Yang X (2017) Enhanced Degradation of Misfolded Proteins Promotes Tumorigenesis. Cell Rep 18(13):3143–3154. DOI: https://doi.org/10.1016/j.celrep.2017.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lerner M, Corcoran M, Cepeda D, Nielsen ML, Zubarev R, Ponten F, Uhlen M, Hober S, Grander D, Sangfelt O (2007) The RBCC gene RFP2 (Leu5) encodes a novel transmembrane E3 ubiquitin ligase involved in ERAD. Mol Biol Cell 18(5):1670–1682. DOI: https://doi.org/10.1091/mbc.e06-03-0248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu Y, Tao S, Liao L, Li Y, Li H, Li Z, Lin L, Wan X, Yang X, Chen L (2020) TRIM25 promotes the cell survival and growth of hepatocellular carcinoma through targeting Keap1-Nrf2 pathway. Nat Commun 11(1):348. DOI: https://doi.org/10.1038/s41467-019-14190-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Valiyeva F, Jiang F, Elmaadawi A, Moussa M, Yee SP, Raptis L, Izawa JI, Yang BB, Greenberg NM, Wang F et al (2011) Characterization of the oncogenic activity of the novel TRIM59 gene in mouse cancer models. Mol Cancer Ther 10(7):1229–1240. DOI: https://doi.org/10.1158/1535-7163.mct-11-0077

    Article  CAS  PubMed  Google Scholar 

  33. Liu Y, Dong Y, Zhao L, Su L, Diao K, Mi X (2018) TRIM59 overexpression correlates with poor prognosis and contributes to breast cancer progression through AKT signaling pathway. Mol Carcinog 57(12):1792–1802. DOI: https://doi.org/10.1002/mc.22897

    Article  CAS  PubMed  Google Scholar 

  34. Sun Y, Ji B, Feng Y, Zhang Y, Ji D, Zhu C, Wang S, Zhang C, Zhang D, Sun Y (2017) TRIM59 facilitates the proliferation of colorectal cancer and promotes metastasis via the PI3K/AKT pathway. Oncol Rep 38(1):43–52. DOI: https://doi.org/10.3892/or.2017.5654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dahpy MA, Salama RHM, Kamal AA, El-Deek HE, AbdelMotaleb AA, Abd-El-Rehim AS, Hassan EA, Alsanory AA, Saad MM, Ali M (2022) Evaluation of tripartite motif 59 and its diagnostic utility in benign bowel diseases and colorectal cancer. J Biochem Mol Toxicol 36(7). DOI: https://doi.org/10.1002/jbt.23065

  36. Liu Y, Zhang JB, Qin Y, Wang W, Wei L, Teng Y, Guo L, Zhang B, Lin Z, Liu J et al (2013) PROX1 promotes hepatocellular carcinoma metastasis by way of up-regulating hypoxia-inducible factor 1α expression and protein stability. Hepatology (Baltimore MD) 58(2):692–705. DOI: https://doi.org/10.1002/hep.26398

    Article  CAS  Google Scholar 

  37. Cao SS, Kaufman RJ (2014) Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal 21(3):396–413. DOI: https://doi.org/10.1089/ars.2014.5851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao Y, Hu X, Liu Y, Dong S, Wen Z, He W, Zhang S, Huang Q, Shi M (2017) ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Mol Cancer 16(1):79. DOI: https://doi.org/10.1186/s12943-017-0648-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Haynes CM, Titus EA, Cooper AA (2004) Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. Mol Cell 15(5):767–776. DOI: https://doi.org/10.1016/j.molcel.2004.08.025

    Article  CAS  PubMed  Google Scholar 

  40. Wiseman RL, Powers ET, Buxbaum JN, Kelly JW, Balch WE (2007) An adaptable standard for protein export from the endoplasmic reticulum. Cell 131(4):809–821. DOI: https://doi.org/10.1016/j.cell.2007.10.025

    Article  CAS  PubMed  Google Scholar 

  41. Varshavsky A (2017) The Ubiquitin System, Autophagy, and Regulated Protein Degradation. Annu Rev Biochem 86:123–128. DOI: https://doi.org/10.1146/annurev-biochem-061516-044859

    Article  CAS  PubMed  Google Scholar 

  42. Kaufman RJ (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13(10):1211–1233. DOI: https://doi.org/10.1101/gad.13.10.1211

    Article  CAS  PubMed  Google Scholar 

  43. Mori K (2000) Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101(5):451–454. DOI: https://doi.org/10.1016/s0092-8674(00)80855-7

    Article  CAS  PubMed  Google Scholar 

  44. Hwang J, Walczak CP, Shaler TA, Olzmann JA, Zhang L, Elias JE, Kopito RR Characterization of protein complexes of the endoplasmic reticulum-associated degradation E3 ubiquitin ligase Hrd1.The Journal of biological chemistry2017, 292(22):9104–9116. DOI: https://doi.org/10.1074/jbc.M117.785055

  45. Mueller B, Klemm EJ, Spooner E, Claessen JH, Ploegh HL (2008) SEL1L nucleates a protein complex required for dislocation of misfolded glycoproteins. Proc Natl Acad Sci USA 105(34):12325–12330. DOI: https://doi.org/10.1073/pnas.0805371105

    Article  PubMed  PubMed Central  Google Scholar 

  46. Schoebel S, Mi W, Stein A, Ovchinnikov S, Pavlovicz R, DiMaio F, Baker D, Chambers MG, Su H, Li D et al (2017) Cryo-EM structure of the protein-conducting ERAD channel Hrd1 in complex with Hrd3. Nature 548(7667):352–355. DOI: https://doi.org/10.1038/nature23314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gardner RG, Swarbrick GM, Bays NW, Cronin SR, Wilhovsky S, Seelig L, Kim C, Hampton RY (2000) Endoplasmic reticulum degradation requires lumen to cytosol signaling. Transmembrane control of Hrd1p by Hrd3. J Cell Biol 151(1):69–82. DOI: https://doi.org/10.1083/jcb.151.1.69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. The Lancet O (2017) Colorectal cancer: a disease of the young? Lancet Oncol 18(4):413. DOI: https://doi.org/10.1016/S1470-2045(17)30202-4

    Article  Google Scholar 

  49. Chen L, Yang X (2019) TRIM11 cooperates with HSF1 to suppress the anti-tumor effect of proteotoxic stress drugs. Cell cycle (Georgetown Tex) 18(1):60–68. DOI: https://doi.org/10.1080/15384101.2018.1558870

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by Natural Science Foundation of Guangdong Province (2022A1515012030), Joint Funds of the Natural Science Foundation of Shandong Province (ZR2021LSW024), and the National Key R&D Program of China (2020YFA0710802).

Author information

Authors and Affiliations

Authors

Contributions

X.F., G.Y., L.Z., S.T., S.J.S., L.C.and Q.W. contributed to the acquisition of data, interpretation of data, and drafting the article. X.F., G.Y., L.Z., L.C. and Q.W. contributed to analyze the data and wrote the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Liang Chen or Qingxia Wu.

Ethics declarations

Competing interests

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Yang, G., Zhang, L. et al. TRIM59 guards ER proteostasis and prevents Bortezomib-mediated colorectal cancer (CRC) cells’ killing. Invest New Drugs 40, 1244–1253 (2022). https://doi.org/10.1007/s10637-022-01306-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-022-01306-7

Keywords

Navigation