Log in

Evaluation of correlation between Diopsys® NOVA™ fixed-luminance flicker ERG and Diagnosys® Espion 2™ flicker ERG parameters

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Purpose

Diopsys® NOVA™ is a novel full-field electroretinography (ffERG) device that can make rapid measurements of retinal electrophysiologic function. Diagnosys® Espion 2™ is a clinical gold-standard ERG device. This study aimed to investigate whether light-adapted Diopsys® NOVA™ fixed-luminance flicker ffERG magnitude and implicit time (converted from phase) measurements correlate with light-adapted Diagnosys® Espion 2™ flicker ffERG amplitude and implicit time measurements, respectively.

Methods

Twelve patients (22 eyes) with various retinal and uveitic diseases underwent light-adapted Diagnosys® Espion 2™ and Diopsys® NOVA™ fixed-luminance flicker testing. Diopsys® magnitude and implicit time (converted from phase) measurements were compared to Diagnosys® amplitude and implicit time measurements, and a Pearson correlation was used to evaluate any existing correlation. Groups were also compared using generalized estimating equations. Bland–Altman plots were utilized to determine agreement between the comparison groups.

Results

Age of patients ranged from 14 to 87 years. 58% (n = 7/12) of patients were female. A significant, positive correlation (r = 0.880, P < 0.001) was observed between magnitude (Diopsys®) and amplitude (Diagnosys®) measurements. Amplitude increases by 6.69 µV for each 1 µV increase in Magnitude (p-value < 0.001). A statistically significant, strong positive correlation was observed between Diopsys® implicit time measurements (converted from phase) and Diagnosys® implicit time measurements (r = 0.814, p-value < 0.001). For each 1 ms increase in Diopsys® implicit time, Diagnosys® implicit time increases by 1.13 ms (p-value < 0.001).

Conclusions

There is a statistically significant positive correlation between light-adapted Diopsys® NOVA™ fixed-luminance flicker amplitude and Diagnosys® flicker magnitude values. Additionally, there is a statistically significant positive correlation between Diopsys® NOVA™ fixed-luminance flicker implicit time (converted from phase) and Diagnosys® flicker implicit time values. These results imply that the Diopsys® NOVA™ module, which utilizes the nonstandard shortened International Society for Clinical Electrophysiology of Vision (ISCEV) ERG protocol, can produce reliable light-adapted flicker ffERG measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Robson AG, Nilsson J, Li S, Jalali S, Fulton AB, Tormene AP, Holder GE, Brodie SE (2018) Iscev guide to visual electrodiagnostic procedures. Doc Ophthalmol 136(1):1–26. https://doi.org/10.1007/s10633-017-9621-y

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gundogan FC, Tas A, Sobaci G (2011) Electroretinogram in hereditary retinal disorders. Electroretinograms pp 5–132.

  3. Hassan-Karimi H, Jafarzadehpur E, Blouri B, Hashemi H, Sadeghi AZ, Mirzajani A (2012) Frequency domain electroretinography in retinitis pigmentosa versus normal eyes. J Ophthalmic Vis Res 7(1):34–38

    PubMed  PubMed Central  Google Scholar 

  4. Vincent A, Robson AG, Holder GE (2013) Pathognomonic (diagnostic) ergs A review and update. Retina 33(1):5–12. https://doi.org/10.1097/IAE.0b013e31827e2306

    Article  PubMed  Google Scholar 

  5. Good PA, Searle AE, Campbell S, Crews SJ (1989) Value of the erg in congenital nystagmus. Br J Ophthalmol 73(7):512–515. https://doi.org/10.1136/bjo.73.7.512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Khanna S, Martins A, Oakey Z, Mititelu M (2019) Non-paraneoplastic autoimmune retinopathy: multimodal testing characteristics of 13 cases. J Ophthalmic Inflamm Infect 9(1):6. https://doi.org/10.1186/s12348-019-0171-1

    Article  PubMed  PubMed Central  Google Scholar 

  7. Johnson MA, Marcus S, Elman MJ, McPhee TJ (1988) Neovascularization in central retinal vein occlusion: electroretinographic findings. Arch Ophthalmol 106(3):348–352. https://doi.org/10.1001/archopht.1988.01060130374025

    Article  CAS  PubMed  Google Scholar 

  8. Bresnick GH, Palta M (1987) Temporal aspects of the electroretinogram in diabetic retinopathy. Arch Ophthalmol 105(5):660–664. https://doi.org/10.1001/archopht.1987.01060050078042

    Article  CAS  PubMed  Google Scholar 

  9. Tahara K, Matsuura T, Otori T (1993) Diagnostic evaluation of diabetic retinopathy by 30-hz flicker electroretinography. Jpn J Ophthalmol 37(2):204–210

    CAS  PubMed  Google Scholar 

  10. Ponjavic V, Andreasson S (2001) Multifocal erg and full-field erg in patients on long-term vigabatrin medication. Doc Ophthalmol 102(1):63–72. https://doi.org/10.1023/a:1017589301855

    Article  CAS  PubMed  Google Scholar 

  11. Zoumalan CI, Zamanian RT, Doyle RL, Marmor MF (2009) Erg evaluation of daily high-dose sildenafil usage. Doc Ophthalmol 118(3):225–231. https://doi.org/10.1007/s10633-008-9148-3

    Article  PubMed  Google Scholar 

  12. Creel DJ (2019) Electroretinograms. Handb Clin Neurol 160:481–493. https://doi.org/10.1016/B978-0-444-64032-1.00032-1

    Article  PubMed  Google Scholar 

  13. Wolpert K, Tsang S. Electroretinography. Electroretinograms. IntechOpen; 2011.

  14. Resende AF, Sanvicente CT, Eshraghi H, Garcia A, Pickel K, Zhang Q, Waisbourd M, Jay Katz L (2019) Test-retest repeatability of the pattern electroretinogram and flicker electroretinogram. Doc Ophthalmol 139(3):185–195. https://doi.org/10.1007/s10633-019-09707-5

    Article  PubMed  Google Scholar 

  15. Robson AG, Frishman LJ, Grigg J, Hamilton R, Jeffrey BG, Kondo M, Li S, McCulloch DL (2022) Iscev standard for full-field clinical electroretinography (2022 update). Doc Ophthalmol 144(3):165–177. https://doi.org/10.1007/s10633-022-09872-0

    Article  PubMed  PubMed Central  Google Scholar 

  16. Maleki A, Ueberroth JA, Manhapra A, Walsh M, Asgari S, Chang PY, Anesi SD, Foster CS (2022) Fixed-luminance and multi-luminance flicker electroretinography parameters in patients with early active birdshot chorioretinopathy. Ocul Immunol Inflamm 30(1):129–135. https://doi.org/10.1080/09273948.2020.1797113

    Article  CAS  PubMed  Google Scholar 

  17. Proakis J, Manolakis D (1996) Digital signal processing. Principles, algorithms, and applications, 4th edn. Prentice Hall.

  18. Tang J, Hui F, Hadoux X, Sarossy M, van Wijngaarden P, Coote M, Crowston JG (2018) A comparison of the reteval sensor strip and dtl electrode for recording the photopic negative response. Transl Vis Sci Technol 7(6):27. https://doi.org/10.1167/tvst.7.6.27

    Article  PubMed  PubMed Central  Google Scholar 

  19. Brodie SE (2014) Tips and tricks for successful electroretinography in children. Curr Opin Ophthalmol 25(5):366–373. https://doi.org/10.1097/ICU.0000000000000093

    Article  PubMed  Google Scholar 

  20. Hobby AE, Kozareva D, Yonova-Doing E, Hossain IT, Katta M, Huntjens B, Hammond CJ, Binns AM, Mahroo OA (2018) Effect of varying skin surface electrode position on electroretinogram responses recorded using a handheld stimulating and recording system. Doc Ophthalmol 137(2):79–86. https://doi.org/10.1007/s10633-018-9652-z

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lapkovska A, Palmowski-Wolfe AM, Todorova MG (2016) Comparing dtl microfiber and neuroline skin electrode in the mini ganzfeld erg. BMC Ophthalmol 16:137. https://doi.org/10.1186/s12886-016-0311-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liew G, Mitchell P, Wang JJ, Wong TY (2006) Fundoscopy: To dilate or not to dilate? BMJ 332(7532):3. https://doi.org/10.1136/bmj.332.7532.3

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wood JM, Garth D, Grounds G, McKay P, Mulvahil A (2003) Pupil dilatation does affect some aspects of daytime driving performance. Br J Ophthalmol 87(11):1387–1390. https://doi.org/10.1136/bjo.87.11.1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kato K, Kondo M, Sugimoto M, Ikesugi K, Matsubara H (2015) Effect of pupil size on flicker ergs recorded with reteval system: new mydriasis-free full-field erg system. Invest Ophthalmol Vis Sci 56(6):3684–3690. https://doi.org/10.1167/iovs.14-16349

    Article  CAS  PubMed  Google Scholar 

  25. Mobasserian A, Zaidi M, Halim S, Hwang JJ, Regenold J, Akhavanrezayat A, Karaca I, KhojastehJafari H, Yavari N, Matsumiya W, Yasar C, Than NTT, Uludag G, Do D, Ghoraba H, Nguyen QD (2022) Effect of pupil size on fixed-luminance flicker full-field electroretinogram magnitude. Clin Ophthalmol 16:3733–3740. https://doi.org/10.2147/opth.S382207

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wroblewski JJ, McChancy C, Pickel K, Buterbaugh H, Wieland T, Gonzalez A (2020) Reproducibility of fixed-luminance and multi-luminance flicker electroretinography in patients with diabetic retinopathy using an office-based testing paradigm. J Diabetes Sci Technol 14(6):1095–1103

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding was received for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Dong Nguyen.

Ethics declarations

Conflict of interest

Stanford University has received research support through the availability of the Diopsys® NOVA™ device for research purposes. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers' bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Stanford University School of Medicine and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Human rights and statement

This article does not include any studies involving animals conducted by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 49 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Regenold, J., Doan, H.L., Ghoraba, H. et al. Evaluation of correlation between Diopsys® NOVA™ fixed-luminance flicker ERG and Diagnosys® Espion 2™ flicker ERG parameters. Doc Ophthalmol 146, 257–266 (2023). https://doi.org/10.1007/s10633-023-09934-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-023-09934-x

Keywords

Navigation