Log in

Metrical properties of self-dual bent functions

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper we study metrical properties of Boolean bent functions which coincide with their dual bent functions. We propose an iterative construction of self-dual bent functions in \(n+2\) variables through concatenation of two self-dual and two anti-self-dual bent functions in n variables. We prove that minimal Hamming distance between self-dual bent functions in n variables is equal to \(2^{n/2}\). It is proved that within the set of sign functions of self-dual bent functions in \(n\geqslant 4\) variables there exists a basis of the eigenspace of the Sylvester Hadamard matrix attached to the eigenvalue \(2^{n/2}\). Based on this result we prove that the sets of self-dual and anti-self-dual bent functions in \(n\geqslant 4\) variables are mutually maximally distant. It is proved that the sets of self-dual and anti-self-dual bent functions in n variables are metrically regular sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Canteaut A., Charpin P.: Decomposing bent functions. IEEE Trans. Inf. Theory 49(8), 2004–2019 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  2. Carlet C.: Boolean functions for cryptography and error correcting code. In: Crama Y., Hammer P.L. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering, pp. 257–397. Cambridge University Press, Cambridge (2010).

    Chapter  MATH  Google Scholar 

  3. Carlet C., Danielson L.E., Parker M.G., Solé P.: Self-dual bent functions. Int. J. Inform. Coding Theory 1, 384–399 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  4. Carlet C., Mesnager S.: Four decades of research on bent functions. J. Des. Codes Cryptogr. 78(1), 5–50 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  5. Climent J.-J., Garcia F.J., Requena V.: A construction of bent functions of \(n+2\) variables from a bent function of \(n\) variables and its cyclic shifts. Algebra. https://doi.org/10.1155/2014/701298 (2014).

    Article  Google Scholar 

  6. Cusick T.W., Stănică P.: Cryptographic Boolean Functions and Applications. Academic Press, London (2017).

    MATH  Google Scholar 

  7. Danielsen L.E., Parker M.G., Solé P.: The Rayleigh Quotient of Bent Functions. Springer Lecture Notes in Computer Science, vol. 5921, pp. 418–432. Springer, Berlin (2009).

    Chapter  Google Scholar 

  8. Dillon J.: Elementary Hadamard difference sets. PhD. dissertation, Univ. Maryland, College Park (1974).

  9. Feulner T., Sok L., Solé P., Wassermann A.: Towards the classification of self-dual bent functions in eight variables. Des. Codes Cryptogr. 68(1), 395–406 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  10. Hou X.-D.: Classification of self dual quadratic bent functions. Des. Codes Cryptogr. 63(2), 183–198 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  11. Hyun J.Y., Lee H., Lee Y.: MacWilliams duality and Gleason-type theorem on self-dual bent functions. Des. Codes Cryptogr. 63(3), 295–304 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  12. Janusz G.J.: Parametrization of self-dual codes by orthogonal matrices. Finite Fields Appl. 13(3), 450–491 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  13. Kolomeec N.A.: The graph of minimal distances of bent functions and its properties. Des. Codes Cryptogr. 85(3), 1–16 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  14. Kutsenko A.V.: The Hamming distance spectrum between self-dual Maiorana–McFarland bent functions. J. Appl. Ind. Math. 12(1), 112–125 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  15. Langevin P., Leander G., McGuire G.: Kasami bent function are not equivalent to their duals. Finite Fields Appl. 461, 187–197 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  16. Luo G., Cao X., Mesnager S.: Several new classes of self-dual bent functions derived from involutions. Cryptogr. Commun. https://doi.org/10.1007/s12095-019-00371-9 (2019).

    Article  MathSciNet  Google Scholar 

  17. Mesnager S.: Several new infinite families of bent functions and their duals. IEEE Trans. Inf. Theory 60(7), 4397–4407 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  18. Mesnager S.: Bent Functions: Fundamentals and Results, p. 544. Springer, Berlin (2016).

    Book  MATH  Google Scholar 

  19. Oblaukhov A.K.: Metric complements to subspaces in the Boolean cube. J. Appl. Ind. Math. 10(3), 397–403 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  20. Oblaukhov A.K.: A lower bound on the size of the largest metrically regular subset of the Boolean cube. Cryptogr. Commun. 11(4), 777–791 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  21. Preneel B., Van Leekwijck W., Van Linden L., Govaerts R., Vandewalle J.: Propagation characteristics of Boolean functions. In: Advances in Cryptology-EUROCRYPT. Lecture Notes in Computer Science, vol. 473, pp. 161–173. Springer, Berlin (1990).

    Chapter  Google Scholar 

  22. Rothaus O.S.: On bent functions. J. Comb. Theory Ser. A 20(3), 300–305 (1976).

    Article  MATH  Google Scholar 

  23. Sok L., Shi M., Solé P.: Classification and construction of quaternary self-dual bent functions. Cryptogr. Commun. 10(2), 277–289 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  24. Stănică P., Sasao T., Butler J.T.: Distance duality on some classes of Boolean functions. J. Comb. Math. Comb. Comput. 107, 181–198 (2018).

    MathSciNet  MATH  Google Scholar 

  25. Tokareva N.: Bent Functions, Results and Applications to Cryptography. Academic Press, London (2015).

    MATH  Google Scholar 

  26. Tokareva N.N.: The group of automorphisms of the set of bent functions. Discret. Math. Appl. 20(5), 655–664 (2010).

    MATH  Google Scholar 

  27. Tokareva N.N.: On the number of bent functions from iterative constructions: lower bounds and hypotheses. Adv. Math. Commun. 5(4), 609–621 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  28. Tokareva N.: Duality between bent functions and affine functions. Discret. Math. 312, 666–670 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang Q., Johansson T.: A note on fast algebraic attacks and higher order nonlinearities. In: International Conference on Information Security and Cryptology, Inscrypt 2010, pp. 404–414 (2010).

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr Kutsenko.

Additional information

Communicated by C. Carlet.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author was supported by the Russian Foundation for Basic Research (Projects No. 18-31-00374, 18-07-01394), by the Ministry of Education and Science of the Russian Federation (the 5-100 Excellence Programme and the Project No. 1.12875.2018/12.1), by the program of fundamental scientific researches of the SB RAS No. I.5.1. (Project No. 0314-2016-0017).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutsenko, A. Metrical properties of self-dual bent functions. Des. Codes Cryptogr. 88, 201–222 (2020). https://doi.org/10.1007/s10623-019-00678-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-019-00678-x

Keywords

Mathematics Subject Classification

Navigation