Log in

KLF4 Induces Colorectal Cancer by Promoting EMT via STAT3 Activation

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Objective

Krüppel-like factor 4 (KLF4) has been demonstrated to exert a pro-carcinogenic effect in solid tissues. However, the precise biological function and underlying mechanisms in colorectal cancer (CRC) remains elucidated.

Aims

To investigate whether KLF4 participates in the proliferation and invasion of CRC.

Methods

The expression of KLF4 was investigated using immunohistochemistry and immunoblotting. The clinical significance of KLF4 was evaluated. Furthermore, the effect of inhibiting or overexpressing KLF4 on tumor was examined. Immunoblotting and qPCR were used to detect Epithelial–mesenchymal transition-related proteins levels. Additionally, the molecular function of KLF4 is related to the STAT3 signaling pathway and was determined through JASPAR, GSEA analysis, and in vitro experiments.

Results

KLF4 exhibits down-regulated expression in CRC and is part of the vessel invasion, TNM stage, and worse prognosis. In vitro studies have shown that KLF4 promotes cellular proliferation and invasion, as well as EMT processes. Xenograft tumor models confirmed the oncogenic role of KLF4 in nude mice. Furthermore, GSEA and JASPAR databases analysis reveal that the binding of KLF4 to the signal transducer and activator of transcription 3 (STAT3) promoter site induces activation of p-STAT3 signaling. Subsequent targeting of STAT3 confirmed its pivotal role in mediating the oncogenic effects exerted by KLF4.

Conclusion

The study suggests that KLF4 activates STAT3 signaling, inducing epithelial–mesenchymal transition, thereby promoting CRC progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The information examined in this study is obtainable in the TCGA (https://portal.gdc.cancer.gov/), GSEA (https://www.gsea-msigdb.org/gsea/index.jsp), and JASPAR (https://jaspar.genereg.net/) databases.

Abbreviations

KLF4:

Kruppel-like factor 4

STAT3:

Signal transducer and activator of transcription 3

p-STAT3:

Phosphorylation of STAT3

CRC:

Colorectal cancer

EMT:

Epithelial–mesenchymal transition

TCGA:

The Cancer Genome Atlas

CHIP:

Chromatin immunoprecipitation

IHC:

Immunohistochemistry

GSEA:

Gene set enrichment analysis

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  PubMed  Google Scholar 

  2. Hashemi M, Abbaszadeh S, Rashidi M et al. STAT3 as a newly emerging target in colorectal cancer therapy: Tumorigenesis, therapy response, and pharmacological/nanoplatform strategies. Environ Res. 2023;233:116458.

    Article  CAS  PubMed  Google Scholar 

  3. Feng RM, Zong YN, Cao SM, Xu RH. Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics? Cancer Commun (Lond). 2019;39:22.

    PubMed  PubMed Central  Google Scholar 

  4. Kawata M, Teramura T, Ordoukhanian P et al. Krüppel-like factor-4 and Krüppel-like factor-2 are important regulators of joint tissue cells and protect against tissue destruction and inflammation in osteoarthritis. Ann Rheum Dis. 2022. https://doi.org/10.1136/annrheumdis-2021-221867.

    Article  PubMed  Google Scholar 

  5. Rowland BD, Peeper DS. KLF4, p21 and context-dependent opposing forces in cancer. Nat Rev Cancer. 2006;6:11–23.

    Article  CAS  PubMed  Google Scholar 

  6. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–676.

    Article  CAS  PubMed  Google Scholar 

  7. Moad M, Pal D, Hepburn AC et al. A novel model of urinary tract differentiation, tissue regeneration, and disease: reprogramming human prostate and bladder cells into induced pluripotent stem cells. Eur Urol. 2013;64:753–761.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Shaverdashvili K, Padlo J, Weinblatt D et al. KLF4 activates NFκB signaling and esophageal epithelial inflammation via the Rho-related GTP-binding protein RHOF. PLoS One. 2019;14:e0215746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang X, **a S, Li H et al. The deubiquitinase USP10 regulates KLF4 stability and suppresses lung tumorigenesis. Cell Death Differ. 2020;27:1747–1764.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang L, Zhou Q, Qiu Q et al. CircPLEKHM3 acts as a tumor suppressor through regulation of the miR-9/BRCA1/DNAJB6/KLF4/AKT1 axis in ovarian cancer. Mol Cancer. 2019;18:144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zou H, Chen H, Zhou Z, Wan Y, Liu Z. ATXN3 promotes breast cancer metastasis by deubiquitinating KLF4. Cancer Lett. 2019;467:19–28.

    Article  CAS  PubMed  Google Scholar 

  12. Ganguly K, Krishn SR, Rachagani S et al. Secretory Mucin 5AC Promotes Neoplastic Progression by Augmenting KLF4-Mediated Pancreatic Cancer Cell Stemness. Cancer Res. 2021;81:91–102.

    Article  CAS  PubMed  Google Scholar 

  13. Ingruber J, Savic D, Steinbichler TB et al. KLF4, Slug and EMT in Head and Neck Squamous Cell Carcinoma. Cells. 2021;10:539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Subbalakshmi AR, Sahoo S, McMullen I et al. KLF4 Induces Mesenchymal-Epithelial Transition (MET) by Suppressing Multiple EMT-Inducing Transcription Factors. Cancers (Basel). 2021;13:5135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. **esh GG, Brohl AS. Classical epithelial-mesenchymal transition (EMT) and alternative cell death process-driven blebbishield metastatic-witch (BMW) pathways to cancer metastasis. Signal Transduct Target Ther. 2022;7:296.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yeung KT, Yang J. Epithelial-mesenchymal transition in tumor metastasis. Mol Oncol. 2017;11:28–39.

    Article  PubMed  Google Scholar 

  17. Wong GL, Manore SG, Doheny DL, Lo HW. STAT family of transcription factors in breast cancer: Pathogenesis and therapeutic opportunities and challenges. Semin Cancer Biol. 2022;86:84–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang J, Wang L, Guan X, Qin JJ. Inhibiting STAT3 signaling pathway by natural products for cancer prevention and therapy: In vitro and in vivo activity and mechanisms of action. Pharmacol Res. 2022;182:106357.

    Article  CAS  PubMed  Google Scholar 

  19. Ouyang S, Li H, Lou L et al. Inhibition of STAT3-ferroptosis negative regulatory axis suppresses tumor growth and alleviates chemoresistance in gastric cancer. Redox Biol. 2022;52:102317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu Y, Gong W, Yang ZY et al. Quercetin induces protective autophagy and apoptosis through ER stress via the p-STAT3/Bcl-2 axis in ovarian cancer. Apoptosis. 2017;22:544–557.

    Article  CAS  PubMed  Google Scholar 

  21. Gong K, Jiao J, Xu C et al. The targetable nanoparticle BAF312@cRGD-CaP-NP represses tumor growth and angiogenesis by downregulating the S1PR1/P-STAT3/VEGFA axis in triple-negative breast cancer. J Nanobiotechnology. 2021;19:165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rokavec M, Öner MG, Li H et al. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest. 2014;124:1853–1867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou Z, Wang P, Sun R et al. Tumor-associated neutrophils and macrophages interaction contributes to intrahepatic cholangiocarcinoma progression by activating STAT3. J Immunother Cancer. 2021;9:e001946.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chen C, Gupta P, Parashar D et al. ERBB3-induced furin promotes the progression and metastasis of ovarian cancer via the IGF1R/STAT3 signaling axis. Oncogene 2020;39:2921–2933.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang X, Sai B, Wang F et al. Hypoxic BMSC-derived exosomal miRNAs promote metastasis of lung cancer cells via STAT3-induced EMT. Mol Cancer. 2019;18:40.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Castro-Mondragon JA, Riudavets-Puig R, Rauluseviciute I et al. JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2022;50:D165-d173.

    Article  CAS  PubMed  Google Scholar 

  27. Sandelin A, Alkema W, Engström P, Wasserman WW, Lenhard B. JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res. 2004;32:D91-94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Menon SS, Guruvayoorappan C, Sakthivel KM, Rasmi RR. Ki-67 protein as a tumour proliferation marker. Clin Chim Acta. 2019;491:39–45.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang J, Zhu Z, Wu H et al. PODXL, negatively regulated by KLF4, promotes the EMT and metastasis and serves as a novel prognostic indicator of gastric cancer. Gastric Cancer 2019;22:48–59.

    Article  CAS  PubMed  Google Scholar 

  30. Zhou H, Guan Q, Hou X et al. Epithelial-mesenchymal reprogramming by KLF4-regulated Rictor expression contributes to metastasis of non-small cell lung cancer cells. Int J Biol Sci. 2022;18:4869–4883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li H, Wang J, **ao W et al. Epigenetic inactivation of KLF4 is associated with urothelial cancer progression and early recurrence. J Urol. 2014;191:493–501.

    Article  CAS  PubMed  Google Scholar 

  32. Orzechowska-Licari EJ, LaComb JF, Mojumdar A, Bialkowska AB. SP and KLF Transcription Factors in Cancer Metabolism. Int J Mol Sci. 2022;23:9956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yan Y, Li Z, Kong X et al. KLF4-Mediated Suppression of CD44 Signaling Negatively Impacts Pancreatic Cancer Stemness and Metastasis. Cancer Res. 2016;76:2419–2431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. He H, Li S, Chen H et al. 12-O-tetradecanoylphorbol-13-acetate promotes breast cancer cell motility by increasing S100A14 level in a Kruppel-like transcription factor 4 (KLF4)-dependent manner. J Biol Chem. 2014;289:9089–9099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yori JL, Seachrist DD, Johnson E et al. Krüppel-like factor 4 inhibits tumorigenic progression and metastasis in a mouse model of breast cancer. Neoplasia 2011;13:601–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang X, Li G, Tian Y et al. Identifying the E2F3-MEX3A-KLF4 signaling axis that sustains cancer cells in undifferentiated and proliferative state. Theranostics. 2022;12:6865–6882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pastushenko I, Blanpain C. EMT Transition States during Tumor Progression and Metastasis. Trends Cell Biol. 2019;29:212–226.

    Article  CAS  PubMed  Google Scholar 

  38. **ong X, Schober M, Tassone E et al. KLF4, A Gene Regulating Prostate Stem Cell Homeostasis, Is a Barrier to Malignant Progression and Predictor of Good Prognosis in Prostate Cancer. Cell Rep. 2018;25:3006-3020.e3007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schulz-Heddergott R, Stark N, Edmunds SJ et al. Therapeutic Ablation of Gain-of-Function Mutant p53 in Colorectal Cancer Inhibits Stat3-Mediated Tumor Growth and Invasion. Cancer Cell. 2018;34:298-314.e297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sun Q, Zhao X, Li R et al. STAT3 regulates CD8+ T cell differentiation and functions in cancer and acute infection. J Exp Med. 2023;220:e20220686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu S, Liu S, Yu Z et al. STAT3 regulates antiviral immunity by suppressing excessive interferon signalling. Cell Rep. 2023;42:112806.

    Article  CAS  PubMed  Google Scholar 

  42. Balic JJ, Albargy H, Luu K et al. STAT3 serine phosphorylation is required for TLR4 metabolic reprogramming and IL-1β expression. Nat Commun. 2020;11:3816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Balanis N, Wendt MK, Schiemann BJ, Wang Z, Schiemann WP, Carlin CR. Epithelial to mesenchymal transition promotes breast cancer progression via a fibronectin-dependent STAT3 signaling pathway. J Biol Chem. 2013;288:17954–17967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang C, Guo F, Xu G, Ma J, Shao F. STAT3 cooperates with Twist to mediate epithelial-mesenchymal transition in human hepatocellular carcinoma cells. Oncol Rep. 2015;33:1872–1882.

    Article  CAS  PubMed  Google Scholar 

  45. Ka-Yue Chow L, Lai-Shun Chung D, Tao L et al. Epigenomic landscape study reveals molecular subtypes and EBV-associated regulatory epigenome reprogramming in nasopharyngeal carcinoma. EBioMedicine. 2022;86:104357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ou DL, Chen CW, Hsu CL et al. Regorafenib enhances antitumor immunity via inhibition of p38 kinase/Creb1/Klf4 axis in tumor-associated macrophages. J Immunother Cancer. 2021;9:e001657.

    Article  PubMed  PubMed Central  Google Scholar 

  47. You W, Ouyang J, Cai Z, Chen Y, Wu X. Comprehensive Analyses of Immune Subtypes of Stomach Adenocarcinoma for mRNA Vaccination. Front Immunol. 2022;13:827506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhao W, Hisamuddin IM, Nandan MO, Babbin BA, Lamb NE, Yang VW. Identification of Krüppel-like factor 4 as a potential tumor suppressor gene in colorectal cancer. Oncogene. 2004;23:395–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ma Y, Wu L, Liu X et al. KLF4 inhibits colorectal cancer cell proliferation dependent on NDRG2 signaling. Oncol Rep. 2017;38:975–984.

    Article  CAS  PubMed  Google Scholar 

  50. Zou S, Tong Q, Liu B, Huang W, Tian Y, Fu X. Targeting STAT3 in Cancer Immunotherapy. Mol Cancer. 2020;19:145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

Thanks to my colleagues for their contributions.

Funding

This work was funded by Science and Technology Project of Jiangxi Province (GJJ2200241).

Author information

Authors and Affiliations

Authors

Contributions

L.Y. and Y.M. carried out the formal analysis and drafted the initial manuscript; J.X. oversaw the project administration; L.Y. conducted the experiments. Y.M. participated in software analysis; L.Y. and J.X. conducted data curation; L.Y., Y.M., and J.X. were instrumental in authoring, critically revising, and editing the manuscript; all contributors thoroughly reviewed and endorsed the final version submitted for publication.

Corresponding author

Correspondence to Jiajia **ang.

Ethics declarations

Conflict of interest

All authors affirm that there exists no competing interest in relation to the publication of this manuscript.

Ethical approval

In compliance with local laws and institutional guidelines, ethical review and approval were waived for this research involving human participants. Similarly, in adherence to national regulations and institutional standards, written informed consent from participants was not necessary for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, L., Meng, Y. & **ang, J. KLF4 Induces Colorectal Cancer by Promoting EMT via STAT3 Activation. Dig Dis Sci (2024). https://doi.org/10.1007/s10620-024-08473-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10620-024-08473-y

Keywords

Navigation