Log in

Regulation of matrix metalloproteinase-1 and alpha-smooth muscle actin expression by interleukin-1 alpha and tumour necrosis factor alpha in hepatic stellate cells

  • Published:
Cytotechnology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Hepatic stellate cells (HSCs) are key players in liver fibrosis and regeneration via collagen degradation and synthesis. These phenomena involve inflammatory cytokines released from non-parenchymal liver cells such as Kupffer cells. Although the effects of individual cytokines on many cell types have been investigated in various conditions, such as inflammation and tissue fibrosis, investigating the effect of combined cytokines would further our understanding of the regulatory mechanisms in tissue fibrosis. Here, we report the effect of multiple cytokine combinations on primary HSCs. We first examined the effect of individual cytokines and then the simultaneous exposure of different cytokines, including interleukin-6 (IL-6), IL-1 alpha (IL-1α), platelet-derived growth factor (PDGF), tumour necrosis factor-alpha (TNF-α) and transforming growth factor-beta (TGF-β), on matrix metalloproteinase-1 (MMP1) gene expression in primary HSCs. We observed that the combination of all five cytokines induced higher levels of MMP1 gene expression. Of these cytokines, TNF-α and IL-1α were found to be the key cytokines for not only inducing MMP1 expression, but also increasing α-smooth muscle actin gene expression. In conclusion, the combined treatment of TNF-α and IL-1α on HSCs had an enhanced effect on the expression of the fibrotic genes, MMP1 and α-smooth muscle actin, so appears to be an important regulator for tissue regeneration. This finding suggests that stimulation with combined anti-fibrotic cytokines is a potential approach in the development of a novel therapy for the recovery of liver fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angulo P, Keach JC, Batts KP, Lindor KD (1999) Independent predictors of liver fibrosis in patients with nonalcoholic steatohepatitis. Hepatology 30:61356–61362

    Google Scholar 

  • Bataller R, Brenner DA (2005) Liver fibrosis. J Clin Invest 115:209

    Article  CAS  Google Scholar 

  • Benyon RC, Iredale JP (2000) Is liver fibrosis reversible? Gut 46:443–446

    Article  CAS  Google Scholar 

  • Borthwick LA, Wynn TA, Fisher AJ (2013) Cytokine mediated tissue fibrosis. Biochim Biophys Acta 1832:1049–1060

    Article  CAS  Google Scholar 

  • Brenner DA, Kisseleva T, Scholten D, Paik YH, Iwaisako K, Inokuchi S, Taura K (2012) Origin of myofibroblasts in liver fibrosis. Fibrogenesis Tissue Repair 5(Suppl 1):S17

    Article  Google Scholar 

  • Chambers M, Kirkpatrick G, Evans M, Gorski G, Foster S, Borghaei RC (2013) IL-4 inhibition of IL-1 induced Matrix Metalloproteinase-3 (MMP-3) expression in human fibroblasts involves decreased AP-1 activation via negative crosstalk involving of Jun N-terminal Kinase (JNK). Exp Cell Res 319:1398–1408

    Article  CAS  Google Scholar 

  • Cheng G, Wei L, **urong W, **angzhen L, Shiguang Z, Songbin F (2009) IL-17 stimulates migration of carotid artery vascular smooth muscle cells in an MMP-9 dependent manner via p38 MAPK and ERK1/2-dependent NF-kB and AP-1 activation. Cell Mol Neurobiol 29:1161–1168

    Article  CAS  Google Scholar 

  • Chensue SW, Terebuh PD, Remick DG, Scales WE, Kunkel SL (1991) In vivo biologic and immunohistochemical analysis of interleukin-1 alpha, beta and tumor necrosis factor during experimental endotoxemia. Kinetics, Kupffer cell expression, and glucocorticoid effects. Am J Pathol 138:395–402

    CAS  Google Scholar 

  • Choy EH, Panayi GS (2001) Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med 344:907–916

    Article  CAS  Google Scholar 

  • Coker RK, Laurent GJ (1998) Pulmonary fibrosis: cytokines in the balance. Eur Respir J 11:1218–1221

    Article  CAS  Google Scholar 

  • Fausto N, Campbell JS, Riehle KJ (2012) Liver regeneration. J Hepatol 57:692–694

    Article  Google Scholar 

  • Firestein GS, Alvaro-Gracia JM, Maki R, Alvaro-Garcia JM (1990) Quantitative analysis of cytokine gene expression in rheumatoid arthritis. J Immunol 144:3347–3353

    CAS  Google Scholar 

  • Foey AD, Parry SL, Williams LM, Feldmann M, Foxwell BM, Brennan FM (1998) Regulation of monocyte IL-10 synthesis by endogenous IL-1 and TNF-α: role of the p38 and p42/44 mitogen-activated protein kinases. J Immunol 160:920–928

    CAS  Google Scholar 

  • Friedman SL (2008) Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 88:125–172

    Article  CAS  Google Scholar 

  • Gabay C, McInnes IB (2009) The biological and clinical importance of the ‘new generation’cytokines in rheumatic diseases. Arthritis Res Ther 11:230

    Article  Google Scholar 

  • Gressner AM, Weiskirchen R (2006) Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-beta as major players and therapeutic targets. J Cell Mol Med 10:76–99

    Article  CAS  Google Scholar 

  • Han YP, Zhou L, Wang J, **ong S, Garner WL, French SW, Tsukamoto H (2004) Essential role of matrix metalloproteinases in interleukin-1-induced myofibroblastic activation of hepatic stellate cell in collagen. J Biol Chem 279:4820–4828

    Article  CAS  Google Scholar 

  • Hemmann S, Graf J, Roderfeld M, Roeb E (2007) Expression of MMPs and TIMPs in liver fibrosis–a systematic review with special emphasis on anti-fibrotic strategies. J Hepatol 46:955–975

    Article  CAS  Google Scholar 

  • Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911–1912

    Article  CAS  Google Scholar 

  • Kleiner DE, Stetler-Stevenson WG (1999) Matrix metalloproteinases and metastasis. Cancer Chemother Pharmacol 43:S42–S51

    Article  CAS  Google Scholar 

  • Kolios G, Valatas V, Kouroumalis E (2006) Role of Kupffer cells in the pathogenesis of liver disease. World J Gastroenterol 12:7413–7420

    Article  CAS  Google Scholar 

  • Lee KS, Buck M, Houglum K, Chojkier M (1995) Activation of hepatic stellate cells by TGF alpha and collagen type I is mediated by oxidative stress through c-myb expression. J Clin Invest 96:2461–2468

    Article  CAS  Google Scholar 

  • Mak KM, Chu E, Lau KH, Kwong AJ (2012) Liver fibrosis in elderly cadavers: localization of collagen types I, III, and IV, α-smooth muscle actin, and elastic fibers. Anat Rec 295:1159–1167

    Article  CAS  Google Scholar 

  • McInnes IB, Schett G (2007) Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol 7:429–442

    Article  CAS  Google Scholar 

  • Mengshol JA, Vincenti MP, Brinckerhoff CE (2001) IL-1 induces collagenase-3 (MMP-13) promoter activity in stably transfected chondrocytic cells: requirement for Runx-2 and activation by p38 MAPK and JNK pathways. Nucleic Acids Res 29:4361–4372

    Article  CAS  Google Scholar 

  • Nakamura A, Ueno T, Yagi Y, Okuda K, Ogata T, Nakamura T, Torimura T, Iwamoto H, Ramadoss S, Sata M, Tsutsumi V, Yasuda K, Tomiyasu Y, Obayashi K, Tashiro K, Kuhara S (2010) Human primary cultured hepatic stellate cells can be cryopreserved. Med Mol Morphol 43:107–115

    Article  CAS  Google Scholar 

  • Poynard T, Bedossa P, Opolon P (1997) Natural history of liver fibrosis progression in patients with chronic hepatitis C. Lancet 349:825–832

    Article  CAS  Google Scholar 

  • Reunanen N, Li SP, Ahonen M, Foschi M, Han J, Kähäri VM (2002) Activation of p38α MAPK enhances collagenase-1 (matrix metalloproteinase (MMP)-1) and stromelysin-1 (MMP-3) expression by mRNA stabilization. J Biol Chem 277:32360–32368

    Article  CAS  Google Scholar 

  • Rockey DC, Weymouth N, Shi Z (2013) Smooth muscle α actin (Acta 2) and myofibroblast function during hepatic wound healing. PLoS ONE 29:e77166

    Article  Google Scholar 

  • Sasaki M, Kashima M, Ito T, Watanabe A, Izumiyama N, Sano M, Miura M (2000) Differential regulation of metalloproteinase production, proliferation and chemotaxis of human lung fibroblasts by PDGF, interleukin-1Β and TNF-α. Mediators Inflamm 9:155–160

    Article  CAS  Google Scholar 

  • Seger R, Krebs EG (1995) The MAPK signaling cascade. FASEB J 9:726–735

    CAS  Google Scholar 

  • Seki E, De Minicis S, Österreicher CH, Kluwe J, Osawa Y, Brenner DA, Schwabe RF (2007) TLR4 enhances TGF-Β signaling and hepatic fibrosis. Nat Med 13:1324–1332

    Article  CAS  Google Scholar 

  • Tarrats N, Moles A, Morales A, García-Ruiz C, Fernández-Checa JC, Marí M (2011) Critical role of tumor necrosis factor receptor 1, but not 2, in hepatic stellate cell proliferation, extracellular matrix remodeling, and liver fibrogenesis. Hepatology 54:319–327

    Article  CAS  Google Scholar 

  • Thurman RG (1998) II. Alcoholic liver injury involves activation of Kupffer cells by endotoxin. Am J Physiol 275:G605–G611

    CAS  Google Scholar 

  • Tran SE, Holmström TH, Ahonen M, Kähäri VM, Eriksson JE (2001) MAPK/ERK overrides the apoptotic signaling from Fas, TNF, and TRAIL receptors. J Biol Chem 276:16484–16490

    Article  CAS  Google Scholar 

  • Wells RG (2005) The role of matrix stiffness in hepatic stellate cell activation and liver fibrosis. J Clin Gastroenterol 39:S158–S161

    Article  CAS  Google Scholar 

  • Xu L, Hui AY, Albanis E, Arthur MJ, O’Byrne SM, Blaner WS, Mukherjee P, Friedman SL, Eng FJ (2005) Human hepatic stellate cell lines, LX-1 and LX-2: new tools for analysis of hepatic fibrosis. Gut 54:142–151

    Article  CAS  Google Scholar 

  • Xu J, Itoh Y, Hayashi H, Takii T, Miyazawa K, Onozaki K (2011) Dihydrotestosterone inhibits interleukin-1α or tumor necrosis factor α induced proinflammatory cytokine production via androgen receptor-dependent inhibition of nuclear factor-κB activation in rheumatoid fibroblast-like synovial cell line. Biol Pharm Bull 34:1724–1730

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kosuke Tashiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, A., Obayashi, K., Sonoda, Y. et al. Regulation of matrix metalloproteinase-1 and alpha-smooth muscle actin expression by interleukin-1 alpha and tumour necrosis factor alpha in hepatic stellate cells. Cytotechnology 69, 461–468 (2017). https://doi.org/10.1007/s10616-016-9948-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-016-9948-3

Keywords

Navigation