Log in

Asymmetric gene flow and the evolutionary maintenance of genetic diversity in small, peripheral Atlantic salmon populations

  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Small populations may be expected to harbour less genetic variation than large populations, but the relation between census size (N), effective population size (N e), and genetic diversity is not well understood. We compared microsatellite variation in four small peripheral Atlantic salmon populations from the Iberian peninsula and three larger populations from Scotland to test whether genetic diversity was related to population size. We also examined the historical decline of one Iberian population over a 50-year period using archival scales in order to test whether a marked reduction in abundance was accompanied by a decrease in genetic diversity. Estimates of effective population size (N e) calculated by three temporal methods were consistently low in Iberian populations, ranging from 12 to 31 individuals per generation considering migration, and from 38 to 175 individuals per generation if they were regarded as closed populations. Corresponding N e/N ratios varied from 0.02 to 0.04 assuming migration (mean=0.03) and from 0.04 to 0.18 (mean=0.10) assuming closed populations. Population bottlenecks, inferred from the excess of heterozygosity in relation to allelic diversity, were detected in all four Iberian populations, particularly in those year classes derived from a smaller number of returning adults. However, despite their small size and declining status, Iberian populations continue to display relatively high levels of heterozygosity and allelic richness, similar to those found in larger Scottish populations. Furthermore, in the R. Asón no evidence was found for a historical loss of genetic diversity despite a marked decline in abundance during the last five decades. Thus, our results point to two familiar paradigms in salmonid conservation: (1)␣endangered populations can maintain relatively high levels of genetic variation despite their small size, and (2) marked population declines may not necessarily result in a significant loss of genetic diversity. Although there are several explanations for such results, microsatellite data and physical tagging suggest that high levels of dispersal and asymmetric gene flow have probably helped to maintain genetic diversity in these peripheral populations, and thus to avoid the negative consequences of inbreeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adkison MD (1995) Population differentiation in Pacific salmon: Local adaptation, genetic drift, or the environment? Can. J. Fish. Aquat. Sci. 52: 2762–2777

    Google Scholar 

  • Allendorf FW, Bayles D, Bottom DL, Currens KP, Frissell CA, Hankin D, Lichatowich JA, Nehlsen W, Trotter PC, Williams TH (1997) Prioritizing Pacific salmon stocks for conservation. Conserv. Biol. 11:140–152

    Article  Google Scholar 

  • Ardren WR, Kapuscinski AR (2003) Demographic and genetic estimates of effective population size (Ne) reveals genetic compensation in steelhead trout. Mol. Ecol. 12: 35–49

    Article  PubMed  CAS  Google Scholar 

  • Avise JC (1994) Molecular Markers, Natural History and Evolution. Chapman and Hall, New York

    Google Scholar 

  • Bartley D, Bagley M, Gall G, Bentley B (1992) Use of linkage disequilibrium data to estimate effective size of hatchery and natural fish populations. Conserv. Biol. 6: 365–375

    Article  Google Scholar 

  • Beacham TD, Dempson JB (1998) Population structure of Atlantic salmon from the Conne River, Newfoundland as determined from microsatellite DNA. J. Fish Biol. 52: 665–676

    Article  CAS  Google Scholar 

  • Bernatchez L, Wilson CC (1998) Comparative phylogeography of Nearctic and Palearctic fishes. Mol. Ecol. 7: 431–452

    Article  Google Scholar 

  • Brookes MI, Graneau YA, King P, Rose OC, Thomas CD, Mallet JLB (1997) Genetic analysis of founder bottlenecks in the rare British butterfly Plebejus argus. Conserv. Biol. 11: 648–661

    Article  Google Scholar 

  • Brookfield JFY (1996) A simple new method for estimating null allele frequency from heterozygote deficiency. Mol. Ecol. 5: 453–455

    Article  PubMed  CAS  Google Scholar 

  • Comps B, Gömöry D, Letouzey J, Thiébaut B, Petit RJ (2001) Diverging trends between heterozygosity and allelic richness during postglacial colonization in the European Beech. Genetics 157: 389–397

    PubMed  CAS  Google Scholar 

  • Consuegra S, García de Leániz C, Serdio A, González Morales M, Straus LG, Knox D, Verspoor E (2002) Mitochondrial DNA variation in Pleistocene and modern Atlantic salmon from the Iberian glacial refugium. Mol. Ecol. 11: 2037–2048

    Article  PubMed  CAS  Google Scholar 

  • Consuegra S, García de Leániz C, Serdio A, Verspoor E (2005) Selective exploitation of early running fish may induce genetic and phenotypic changes in Atlantic salmon. J. Fish Biol., 67 (Suppl. A) 129–145

  • Cornuet JM, Piry S, Luikart G, Estoup A, Solignac M (1999) New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153: 1989–2000

    PubMed  CAS  Google Scholar 

  • Daniels SJ, Triddy JA, Walters JR (2000) Inbreeding in small populations of red-cockaded woodpeckers: insights from a spatially explicit individual-based model. In: Young AG, Clarke GM (eds) Genetics, Demography and Viability of Fragmented Populations. Cambridge University Press, Cambridge, pp. 129–148

    Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. B 39: 1–38

    Google Scholar 

  • Dias PC (1996) Sources and sinks in population biology. TREE 11: 326–330

    Google Scholar 

  • Dinerstein E, McCraken GF (1990) Endangered greater one-horned rhinoceros carry high levels of genetic variation. Conserv. Biol. 4: 417–422

    Article  Google Scholar 

  • Dodson JJ, Gibson RJ, Cunjak RA, Friedland KD, García de Leániz C, Gross MR, Newbury R, Nielsen JL, Power ME, Roy S (1998) Elements in the development of conservation plans for Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 55: 312–323

    Article  Google Scholar 

  • Dumas J, Prouzet P (2003) Variability of demographic parameters and population dynamics of Atlantic salmon Salmo salar L. in a south-west French river. ICES Journal of Marine Science 60: 356–370

    Article  Google Scholar 

  • Fleming IA, Hindar K, Mjølnerød IB, Jonsson B, Balstad T, Lamberg A (2000) Lifetime success and interactions of farm salmon invading a native population. Proc. Roy. Soc. Lond. (B) 267: 1517–1523

    Article  CAS  Google Scholar 

  • Ford MJ, Teel D, Van Doornik DM, Kuligowski D, Lawson PW (2004) Genetic population structure of central Oregon Coast coho salmon (Onchorynchus kisutch). Conserv. Genet. 5: 797–812

    Article  CAS  Google Scholar 

  • Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv. Biol. 10:1500–1508

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002). Introduction to Conservation Genetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Franklin IR (1980) Evolutionary change in small populations. In: Soulé ME, Wilcox BA (eds) Conservation Biology: an Evolutionary-ecological Perspective. Sinauer Associates, Sunderland, Massachusetts, pp. 135–149

    Google Scholar 

  • Fraser DJ, Lippé C, Bernatchez L (2004) Consequences of unequal population size, asymmetric gene flow and sex-biased dispersal on population structure in brook charr (Salvelinus fontinalis). Mol. Ecol. 13: 67–80

    Article  PubMed  CAS  Google Scholar 

  • Garant D, Dodson JJ, Bernatchez L (2001) A genetic evaluation of mating system and determinants of individual reproductive success in Atlantic salmon (Salmo salar L.). J. Hered. 92: 137–145

    Article  PubMed  CAS  Google Scholar 

  • García de Leániz C, Martínez JJ (1988) The Atlantic salmon in the rivers of Spain with particular reference to Cantabria. In: Mills D, Piggins D (eds) Atlantic Salmon: Planning for the Future. Croom Helm, London, pp. 179–209

    Google Scholar 

  • García de Leániz C, Verspoor E, Hawkins AD (1989) Genetic determination of the contribution of stocked and wild Atlantic salmon, Salmo salar L., to the angling fisheries in two Spanish rivers. J. Fish Biol. 35: 261–270

    Article  Google Scholar 

  • García de Leániz C, Caballero P, Valero E, Martínez JJ, Hawkins AD (1992) Historical changes in some Spanish rod and line salmon, Salmo salar L. fisheries: why are large multi-seawinter fish becoming scarcer?. J. Fish Biol. 41: 179

    Article  Google Scholar 

  • García de Leániz C, Serdio A, Consuegra S (2001) Situación actual del salmón atlántico en Cantabria (Present status of Atlantic salmon in Cantabria [In Spanish]). In: García de Leániz C, Serdio A, Consuegra S (eds) El Salmón, Joya de Nuestros Ríos. Consejería de Ganadería, Agricultura y Pesca, Santander, pp. 55–82

    Google Scholar 

  • Hanski I (1999) Metapopulation Ecology. Oxford University Press, New York

    Google Scholar 

  • Hauser L, Adcock GJ, Smith PJ, Ramirez JHB, Carvalho GR (2002) Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (Pagrus auratus). Proc. Natl. Acad. Sci. USA 99: 11742–11747

    Article  PubMed  CAS  Google Scholar 

  • Heath DD, Busch C, Kelly J, Atagi DY (2002) Temporal change in genetic structure and effective population size in steelhead trout (Oncorhynchus mykiss). Mol. Ecol. 11: 197–214

    Article  PubMed  CAS  Google Scholar 

  • Hedrick PW, Hedgecock D, Hamelberg S (1995) Effective population size in winter-run chinook salmon. Conserv. Biol. 9: 615–624

    Article  Google Scholar 

  • Hedrick PW (2000) Genetics of Populations (2nd ed.). Jones and Bartlett Publishers, Sudbury, Massachusetts

    Google Scholar 

  • Hendry AP (2001) Adaptive divergence and the evolution of reproductive isolation in the wild: an empirical demonstration using introduced sockeye salmon. Genetica 112–113: 515–534

    Article  PubMed  Google Scholar 

  • Hendry AP, Castric V, Kinnison MT, Quinn TP (2004) The evolution of philopatry and dispersal. In: Hendry AP, Stearns SC (eds) Evolution Illuminated. Salmon and their Relatives. Oxford University Press, New York, pp 52–91

    Google Scholar 

  • Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68: 87–112

    Article  Google Scholar 

  • Jones MW, Hutchings JA (2001) The influence of male parr body size and mate competition on fertilization success and effective population size in Atlantic salmon. Heredity 86: 675–684

    PubMed  CAS  Google Scholar 

  • Jonsson B, Jonsson N, Hansen LP (2003) Atlantic salmon straying from the River Imsa. J. Fish Biol. 62: 641–657

    Article  Google Scholar 

  • Jorde PE, Ryman N (1996) Demographic genetics of brown trout (Salmo trutta) and estimation of effective population size from temporal change of allele frequencies. Genetics 143: 1369–1381

    PubMed  CAS  Google Scholar 

  • Kalinowski ST, Waples RS (2002) Relationship of effective to census size in fluctuating populations. Conserv. Biol. 16: 129–136

    Article  Google Scholar 

  • Keller LF, Arcese P, Smith JNM, Hochachka WM, Stearns SC (1994) Selection against inbred song sparrows during a natural population bottleneck. Nature 372: 356–357

    Article  PubMed  CAS  Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. TREE 17: 230–241

    Google Scholar 

  • Krebs CJ (1989) Ecological Methodology. Harper Collins Publishers, New York

    Google Scholar 

  • L’Abée-Lund JH (1989) Significance of mature male parr in a small population of Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 46: 928–931

    Google Scholar 

  • Laikre L, Jorde PE, Ryman N (1998) Temporal change of mitochondrial DNA haplotype frequencies and female effective size in a brown trout (Salmo trutta) population. Evolution 52: 910–915

    Google Scholar 

  • Laikre L, Järvi T, Johansson L, Palm S, Rubin JF, Glimsäter CE, Landergren S, Ryman N (2002) Spatial and temporal population structure of sea trout at the Island of Gotland, Sweden, delineated from mitochondrial DNA. J. Fish Biol. 60: 49–71

    Article  CAS  Google Scholar 

  • Lande R, Barrowclough GF (1987) Effective population size, genetic variation, and their use in population management. In: Soulé ME (eds) Viable Populations for Conservation. Cambridge University Press, New York, pp 87–123

    Google Scholar 

  • Lande R (1995) Mutation and conservation. Conserv. Biol. 9: 782–791

    Article  Google Scholar 

  • Lenormand T (2002) Gene flow and the limits to natural selection. TREE 17: 183–189

    Google Scholar 

  • Luikart G, Cornuet JM, Allendorf FW (1999) Temporal changes in allele frequencies provide estimates of population bottleneck size. Conserv. Biol. 13: 523–530

    Article  Google Scholar 

  • Martinez JL, Moran P, Perez J, de Gaudemar B, Beall E, Garcia-Vazquez E (2000) Multiple paternity increases effective size of southern Atlantic salmon populations. Mol. Ecol. 9: 293–298

    Article  PubMed  CAS  Google Scholar 

  • Miller CR, Waits LP (2003) The history of effective population size and genetic diversity in the Yellowstone grizzly (Ursus arctos): implications for conservation. Proc. Natl. Acad. Sci. USA 100: 4334–4339

    Article  PubMed  CAS  Google Scholar 

  • Mills LS, Allendorf FW (1996) The one-migrant-per-generation rule in conservation and management. Conserv. Biol. 10: 1509–1518

    Article  Google Scholar 

  • Moran P (2002) Current conservation genetics: building an ecological approach to the synthesis of molecular and quantitative genetic methods. Ecol. Freshw. Fish 11: 30–55

    Article  Google Scholar 

  • Mousadik AE, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree (Argania spinosa (L.) Skeels) endemic of Morocco. Theor. Appl. Genetics 92: 832–839

    Article  Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data II. Gene frequency data. J. Mol. Evol., 153–170

  • Nichols RA, Bruford MW, Groombridge JJ (2001) Sustaining genetic variation in a small population: evidence from the Mauritius kestrel. Mol. Ecol. 10: 593–602

    Article  PubMed  CAS  Google Scholar 

  • Nunney L (1993) The influence of mating system and overlap** generations on effective population size. Evolution 47: 1329–1341

    Google Scholar 

  • Ota T (1993) DISPAN: Genetic Distance and Phylogenetic Analysis. Institute of Molecular Evolutionary Genetics, The Pennsylvania State University, Pennsylvania, USA

    Google Scholar 

  • Østergaard S, Hansen MM, Loeschcke V, Nielsen EE (2003) Long-term temporal changes of genetic composition in brown trout (Salmo trutta L.) populations inhabiting an unstable environment. Mol. Ecol. 12: 3123–3135

    Article  PubMed  Google Scholar 

  • Palm S, Laikre L, Jorde PE, Ryman N (2003) Effective population size and temporal genetic change in stream resident brown trout (Salmo trutta, L.). Conserv. Genet. 4: 249–264

    Article  CAS  Google Scholar 

  • Parrish DL, Behnke RJ, Gephard S, McCormick SD, Reeves GH (1998) Why aren’t there more Atlantic salmon (Salmo salar)?. Can. J. Fish. Aquat. Sci. 55: 281–287

    Article  Google Scholar 

  • Paterson S, Piertney SB, Knox D, Gilbey J, Verspoor E (2004) Characterisation and PCR multiplexing of novel highly variable tetranucleotide Atlantic salmon (Salmo salar L.) microsatellites. Mol. Ecol. Notes 4: 160–162

    Article  CAS  Google Scholar 

  • Petit RJ, Mousadik AE, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv. Biol. 12: 844–855

    Article  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK : a computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 90: 502–503

    Article  Google Scholar 

  • Potter ECE, Russell IC (1994) Comparison of the distribution and homing of hatchery-reared and wild Atlantic salmon, Salmo salar L., from north-east England. Aqaut. Fish. Mgmt. 25: 31–44

    Google Scholar 

  • Primack RB (1998) Essentials of Conservation Biology. (2nd ed.) Sinauer Associates Publishers, Sunderland, Massachusetts

    Google Scholar 

  • Quinn TP, Fresh K (1984) Homing and straying in chinook salmon (Oncorhynchus tshawytscha) from Cowlitz River hatchery, Washington. Can. J. Fish. Aquat. Sci. 41: 1078–1082

    Google Scholar 

  • Quinn TP (1993) A review of homing and straying of wild and hatchery-produced salmon. Fish. Res. 18: 29–44

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (vers. 1.2): Population Genetics Software for Exact Tests and Ecumenicism. J. Hered. 86: 248–249

    Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Google Scholar 

  • Rieman BE, Dunham JB (2000) Metapopulations and salmonids: a synthesis of life history patterns and empirical observations. Ecol. Freshw. Fish 9: 51–64

    Article  Google Scholar 

  • Säisä M, Koljonen M-L, Tähtinen J (2003) Genetic changes in Atlantic salmon stocks since historical times and the effective population size of a long-term captive breeding programme. Conserv. Genet. 4: 613–627

    Article  Google Scholar 

  • Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392: 491–494

    Article  CAS  Google Scholar 

  • Schroeder RK, Lindsay RB, Kenston KR (2001) Origin and straying of hatchery winter steelhead in Oregon coastal rivers. Trans. Am. Fish. Soc. 130: 431–441

    Article  Google Scholar 

  • Shearer WM (1992) The Atlantic Salmon: Natural History, Exploitation and Future Management. Fishing News Books, London

    Google Scholar 

  • Sherwin WB, Moritz C (2000) Managing and monitoring genetic erosion. In: Young AG, Clarke GM (eds) Genetics, Demography and Viability of Fragmented Populations. Cambridge University Press, Cambridge, pp 9–34

    Google Scholar 

  • Shrimpton JM, Heath DD (2003) Census vs. effective population size in chinook salmon: large- and small-scale environmental perturbation effects. Mol. Ecol. 12: 2571–2583

    Article  PubMed  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry (3rd ed.). W.H. Freeman and Co, New York

    Google Scholar 

  • Spidle AP, Kalinowski ST, Lubinski BA, Perkins DL, Beland KF, Kocik JF, King TL (2003) Population structure of Atlantic salmon in Maine with reference to populations from Atlantic Canada. Trans. Am. Fish. Soc. 132: 196–209

    Article  Google Scholar 

  • Storfer A (1999) Gene flow and endangered species translocations: a topic revisited. Biol. Conserv. 87: 173–180

    Article  Google Scholar 

  • Taggart JB, Hynes RA, Prodöhl PA, Ferguson A (1992) A simplified protocol for routine total DNA isolation from salmonid fishes. J. Fish Biol. 40: 963–965

    Article  CAS  Google Scholar 

  • Taggart JB, McLaren IS, Hay DW, Webb JH, Youngson AF (2001) Spawning success in Atlantic salmon (Salmo salar L.): a long-term DNA profiling-based study conducted in a natural stream. Mol. Ecol. 10: 1047–1060

    Article  PubMed  CAS  Google Scholar 

  • Tallman RF, Healey MC (1993) Homing, straying and gene flow among seasonally separated populations of Chum salmon (Oncorhynchus keta). Can. J. Fish. Aquat. Sci. 51: 577–588

    Google Scholar 

  • Taylor EB (1991) A review of local adaptations in Salmonidae, with particular reference to Pacific and Atlantic salmon. Aquaculture 98, 185–207

    Article  Google Scholar 

  • Unwin MJ, Quinn TP (1993) Homing and straying patterns of chinook salmon (Oncorhynchus tshawytscha) from a New Zealand hatchery: spatial distribution of strays and effects of release date. Can. J. Fish. Aquat. Sci. 50: 1168–1175

    Article  Google Scholar 

  • Verspoor E (1988) Reduced genetic variability in first-generation hatchery populations of Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 45: 1686–1690

    Google Scholar 

  • Vrijenhoek RC (1994) Genetic diversity and fitness in small populations. In: Loeschcke V, Tomiuk J, Jain SK (eds) Conservation Genetics. Birkhäuser Verlag, Basel, pp. 37–53

    Google Scholar 

  • Vucetich JA, Waite TA, Nunney L (1997) Fluctuating population size and the ratio of effective to census population size. Evolution 51: 2017–2021

    Google Scholar 

  • Vucetich JA, Waite TA (1998) On the interpretation and application of mean times to extinction. Biodiv. and Conserv. 7: 1539–1547

    Article  Google Scholar 

  • Vucetich JA, Waite TA (1999) Erosion of heterozygosity in fluctuating populations. Conserv. Biol. 13: 860–868

    Article  Google Scholar 

  • Wang J (2001) A pseudo-likelihood method for estimating effective population size from temporally spaced samples. Genet. Res. 78: 243–257

    PubMed  CAS  Google Scholar 

  • Wang J, Whitlock MC (2003) Estimating effective population size and migration rates from genetic samples over space and time. Genetics 163: 429–446

    PubMed  CAS  Google Scholar 

  • Wang S, Hard JJ, Utter F (2002) Genetic variation and fitness in salmonids. Conserv. Genet. 3: 321–333

    Article  CAS  Google Scholar 

  • Wang J (2004) Application of the one-migrant-per-generation rule to conservation and management. Conserv. Biol. 18: 332–343

    Article  Google Scholar 

  • Waples R (1989) A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics 121: 379–391

    PubMed  CAS  Google Scholar 

  • Waples R (1990) Conservation genetics of Pacific salmon: III, estimating effective population size. J. Hered. 81: 277–289

    Google Scholar 

  • Waples RS (1991) Pacific salmon, Oncorhynchs spp., and the definition of “species” under the Endangered Species. Act. Mar. Fish. Rev. 53: 11–21

    Google Scholar 

  • Waples RS (1998) Evolutionary significant units, distinct population segments, and the Endangered Species Act: reply to Pennock and Dimmick. Conserv. Biol. 12: 718–721

    Article  Google Scholar 

  • Waples RS (2002a) Effective size of fluctuating salmon populations. Genetics 161: 783–791

    Google Scholar 

  • Waples RS (2002b) Evaluating the effect of stage-specific survivorship on the N e/N ratio. Mol. Ecol. 11: 1029–1037

    Article  Google Scholar 

  • Waples RS (2004) Salmonid insights into effective population size. In: Hendry AP, Stearns SC (eds) Evolution Illuminated Salmon and their Relatives. Oxford University Press, New York, pp 295–314

    Google Scholar 

  • Weir BS, Cockerman CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370

    Google Scholar 

  • Wenink PW, Groen AF, Roelke-Parker ME, Prins HHT (1998) African buffalo maintain high genetic diversity in the major histocompatibility complex in spite of historically known population bottlenecks. Mol. Ecol. 7: 1315–1322

    Article  PubMed  CAS  Google Scholar 

  • Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: F ST ≠ 1/(4Nm+1). Heredity 82: 117–125

    Article  PubMed  Google Scholar 

  • Wilson AJ, Hutchings JA, Ferguson MM (2004) Dispersal in a stream dwelling salmonid: inferences from tagging and microsatellite studies. Conserv. Genet. 5: 25–37

    Article  CAS  Google Scholar 

  • Wright S (1938) Size of population and breeding structure in relation to evolution. Science 87: 430–431

    Google Scholar 

  • WWF (2001): The Status of Wild Atlantic Salmon: A River by River Assessment. WWF

Download references

Acknowledgements

We thank Angel Serdio, Leticia González and the Cantabrian wildlife bailiffs for help with the collection of samples, and Martha O’Sullivan and Teresa Amigo for help with microsatellite genoty**. **liang Wang provided invaluable assistance with the estimation of effective population size and his help is gratefully acknowledged. We also thank Bill Jordan, Robin Waples and two anonymous referees for useful comments that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofía Consuegra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Consuegra, S., Verspoor, E., Knox, D. et al. Asymmetric gene flow and the evolutionary maintenance of genetic diversity in small, peripheral Atlantic salmon populations. Conserv Genet 6, 823–842 (2005). https://doi.org/10.1007/s10592-005-9042-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-005-9042-4

Keywords

Navigation