Log in

Extending the applicability of Newton’s method using nondiscrete induction

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

We extend the applicability of Newton’s method for approximating a solution of a nonlinear operator equation in a Banach space setting using nondiscrete mathematical induction concept introduced by Potra and Ptak. We obtain new sufficient convergence conditions for Newton’s method using Lipschitz and center-Lipschitz conditions instead of only the Lipschitz condition used in F.A.Potra, V.Ptak, Sharp error bounds for Newton’s process, Numer. Math., 34 (1980), 63–72, and F.A.Potra, V.Ptak, Nondiscrete Induction and Iterative Processes, Research Notes in Mathematics, 103. Pitman Advanced Publishing Program, Boston, 1984. Under the same computational cost as before, we provide: weaker sufficient convergence conditions; tighter error estimates on the distances involved and more precise information on the location of the solution. Numerical examples are also provided in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Amat, C. Bermúdez, S. Busquier, J. Gretay: Convergence by nondiscrete mathematical induction of a two step secant’s method. Rocky Mt. J. Math. 37 (2007), 359–369.

    Article  MATH  Google Scholar 

  2. S. Amat, S. Busquier: Third-order iterative methods under Kantorovich conditions. J. Math. Anal. Appl. 336 (2007), 243–261.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Amat, S. Busquier, J.M. Gutiérrez, M. A. Hernández: On the global convergence of Chebyshev’s iterative method. J. Comput. Appl. Math. 220 (2008), 17–21.

    Article  MathSciNet  MATH  Google Scholar 

  4. I. K. Argyros: The Theory and Application of Abstract Polynomial Equations. St. Lucie/ CRC/Lewis Publ. Mathematics series, Boca Raton, Florida, USA, 1998.

  5. I. K. Argyros: A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space. J. Math. Anal. Appl. 298 (2004), 374–397.

    Article  MathSciNet  MATH  Google Scholar 

  6. I. K. Argyros: On the Newton-Kantorovich hypothesis for solving equations. J. Comput. Appl. Math. 169 (2004), 315–332.

    Article  MathSciNet  MATH  Google Scholar 

  7. I. K. Argyros: Concerning the “terra incognita” between convergence regions of two Newton methods. Nonlinear Anal., Theory Methods Appl. 62 (2005), 179–194.

    Article  MATH  Google Scholar 

  8. I. K. Argyros: Approximating solutions of equations using Newton’s method with a modified Newton’s method iterate as a starting point. Rev. Anal. Numer. Theor. Approx. 36 (2007), 123–137.

    MathSciNet  MATH  Google Scholar 

  9. I. K. Argyros: Computational Theory of Iterative Methods. Studies in Computational Mathematics 15. Elsevier, Amsterdam, 2007.

    Google Scholar 

  10. I. K. Argyros: On a class of Newton-like methods for solving nonlinear equations. J. Comput. Appl. Math. 228 (2009), 115–122.

    Article  MathSciNet  MATH  Google Scholar 

  11. I. K. Argyros: A semilocal convergence analysis for directional Newton methods. Math. Comput. 80 (2011), 327–343.

    Article  MATH  Google Scholar 

  12. I. K. Argyros, S. Hilout: Efficient Methods for Solving Equations and Variational Inequalities. Polimetrica Publisher, Milano, Italy, 2009.

    Google Scholar 

  13. I. K. Argyros, S. Hilout: Enclosing roots of polynomial equations and their applications to iterative processes. Surv. Math. Appl. 4 (2009), 119–132.

    MathSciNet  MATH  Google Scholar 

  14. I. K. Argyros, S. Hilout: Extending the Newton-Kantorovich hypothesis for solving equations. J. Comput. Appl. Math. 234 (2010), 2993–3006.

    Article  MathSciNet  MATH  Google Scholar 

  15. I. K. Argyros, S. Hilout, M. A. Tabatabai: Mathematical Modelling with Applications in Biosciences and Engineering. Nova Publishers, New York, 2011.

    Google Scholar 

  16. W. Bi, Q. Wu, H. Ren: Convergence ball and error analysis of the Ostrowski-Traub method. Appl. Math., Ser. B (Engl. Ed.) 25 (2010), 374–378.

    MathSciNet  MATH  Google Scholar 

  17. E. Cǎtinaş: The inexact, inexact perturbed, and quasi-Newton methods are equivalent models. Math. Comput. 74 (2005), 291–301.

    Google Scholar 

  18. X. Chen, T. Yamamoto: Convergence domains of certain iterative methods for solving nonlinear equations. Numer. Funct. Anal. Optimization 10 (1989), 37–48.

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Deuflhard: Newton Methods for Nonlinear Problems. Affine Invariance and Adaptive Algorithms. Springer Series in Computational Mathematics 35. Springer, Berlin, 2004.

    MATH  Google Scholar 

  20. J. A. Ezquerro, J. M. Gutiérrez, M. A. Hernández, N. Romero, M. J. Rubio: The Newton method: from Newton to Kantorovich. Gac. R. Soc. Mat. Esp. 13 (2010), 53–76. (In Spanish.)

    MathSciNet  MATH  Google Scholar 

  21. J. A. Ezquerro, M. A. Hernández: On the R-order of convergence of Newton’s method under mild differentiability conditions. J. Comput. Appl. Math. 197 (2006), 53–61.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. A. Ezquerro, M. A. Hernández: An improvement of the region of accessibility of Chebyshev’s method from Newton’s method. Math. Comput. 78 (2009), 1613–1627.

    Article  MATH  Google Scholar 

  23. J. A. Ezquerro, M. A. Hernández, N. Romero: Newton-type methods of high order and domains of semilocal and global convergence. Appl.Math. Comput. 214 (2009), 142–154.

    Article  MathSciNet  MATH  Google Scholar 

  24. W. B. Gragg, R.A. Tapia: Optimal error bounds for the Newton-Kantorovich theorem. SIAM J. Numer. Anal. 11 (1974), 10–13.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. A. Hernández: A modification of the classical Kantorovich conditions for Newton’s method. J. Comput. Appl. Math. 137 (2001), 201–205.

    Article  MathSciNet  MATH  Google Scholar 

  26. L. V. Kantorovich, G. P. Akilov: Functional Analysis. Transl. from the Russian. Pergamon Press, Oxford, 1982.

    MATH  Google Scholar 

  27. S. Krishnan, D. Manocha: An efficient surface intersection algorithm based on lower-dimensional formulation. ACM Trans. on Graphics. 16 (1997), 74–106.

    Article  Google Scholar 

  28. G. Lukács: The generalized inverse matrix and the surface-surface intersection problem. Theory and Practice of Geometric Modeling, Lect. Conf., Blaubeuren/FRG 1988. 1989, pp. 167–185.

  29. J. M. Ortega, W. C. Rheinboldt: Iterative Solution of Nonlinear Equations in Several Variables. Computer Science and Applied Mathematics. Academic Press, New York, 1970.

    Google Scholar 

  30. A. M. Ostrowski: Sur la convergence et l’estimation des erreurs dans quelques procedes de resolution des equations numeriques. Gedenkwerk D.A.Grave, Moskau, 1940, pp. 213–234. (In French.)

    MATH  Google Scholar 

  31. A. M. Ostrowski: La methode de Newton dans les espaces de Banach. (The Newton method in Banach spaces). C. R. Acad. Sci., Paris, Ser. A 272 (1971), 1251–1253. (In French.)

    MathSciNet  MATH  Google Scholar 

  32. A. M. Ostrowski: Solution of Equations in Euclidean and Banach Spaces. 3rd ed. of solution of equations and systems of equations. Pure and Applied Mathematics, 9. Academic Press, New York, 1973.

    Google Scholar 

  33. I. Pǎvǎloiu: Introduction in the Theory of Approximation of Equations Solutions. Dacia Ed. Cluj-Napoca, 1976.

  34. F. A. Potra: A characterization of the divided differences of an operator which can be represented by Riemann integrals. Math., Rev. Anal. Numer. Theor. Approximation, Anal. Numer. Theor. Approximation 9 (1980), 251–253.

    MathSciNet  MATH  Google Scholar 

  35. F. A. Potra: An application of the induction method of V. Ptak to the study of regula falsi. Apl. Mat. 26 (1981), 111–120.

    MathSciNet  MATH  Google Scholar 

  36. F. A. Potra: The rate of convergence of a modified Newton’s process. Apl. Mat. 26 (1981), 13–17.

    MathSciNet  MATH  Google Scholar 

  37. F. A. Potra: An error analysis for the secant method. Numer. Math. 38 (1982), 427–445.

    Article  MathSciNet  MATH  Google Scholar 

  38. F. A. Potra: On the convergence of a class of Newton-like methods. Iterative solution of nonlinear systems of equations, Proc. Meeting, Oberwolfach 1982, Lect. Notes Math. 953, pp. 125–137.

  39. F. A. Potra: On the a posteriori error estimates for Newton’s method. Beitr. Numer. Math. 12 (1984), 125–138.

    MathSciNet  Google Scholar 

  40. F. A. Potra: On a class of iterative procedures for solving nonlinear equations in Banach spaces. Computational Mathematics, Banach Cent. Publ. 13 (1984), 607–621.

    MathSciNet  Google Scholar 

  41. F. A. Potra: Sharp error bounds for a class of Newton-like methods. Libertas Math. 5 (1985), 71–84.

    MathSciNet  MATH  Google Scholar 

  42. F. A. Potra, V. Pták: Sharp error bounds for Newton’s process. Numer. Math. 34 (1980), 63–72.

    Article  MathSciNet  MATH  Google Scholar 

  43. F. A. Potra, V. Pták: Nondiscrete induction and a double step secant method. Math. Scand. 46 (1980), 236–250.

    MathSciNet  MATH  Google Scholar 

  44. F. A. Potra, V. Pták: On a class of modified Newton processes. Numer. Funct. Anal. Optimization 2 (1980), 107–120.

    Article  MATH  Google Scholar 

  45. F. A. Potra, V. Pták: A generalization of regula falsi. Numer. Math. 36 (1981), 333–346.

    Article  MATH  Google Scholar 

  46. F. A. Potra, V. Pták: Nondiscrete Induction and Iterative Processes. Research Notes in Mathematics, 103. Pitman Advanced Publishing Program, Boston, 1984.

    MATH  Google Scholar 

  47. P. D. Proinov: General local convergence theory for a class of iterative processes and its applications to Newton’s method. J. Complexity 25 (2009), 38–62.

    Article  MathSciNet  MATH  Google Scholar 

  48. P. D. Proinov: New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems. J. Complexity 26 (2010), 3–42.

    Article  MathSciNet  MATH  Google Scholar 

  49. V. Pták: Some metric aspects of the open map** and closed graph theorems. Math. Ann. 163 (1966), 95–104.

    Article  MathSciNet  MATH  Google Scholar 

  50. V. Pták: A quantitative refinement of the closed graph theorem. Czech. Math. J. 24 (1974), 503–506.

    Google Scholar 

  51. V. Pták: A theorem of the closed graph type. Manuscr. Math. 13 (1974), 109–130.

    Article  MATH  Google Scholar 

  52. V. Pták: Deux theoremes de factorisation. C. R. Acad. Sci., Paris, Ser. A 278 (1974), 1091–1094.

    MathSciNet  MATH  Google Scholar 

  53. V. Pták: Concerning the rate of convergence of Newton’s process. Commentat. Math. Univ. Carol. 16 (1975), 699–705.

    MATH  Google Scholar 

  54. V. Pták: A modification of Newton’s method. Čas. Pěst. Mat. 101 (1976), 188–194.

    MATH  Google Scholar 

  55. V. Pták: Nondiscrete mathematical induction and iterative existence proofs. Linear Algebra Appl. 13 (1976), 223–238.

    Article  MATH  Google Scholar 

  56. V. Pták: The rate of convergence of Newton’s process. Numer. Math. 25 (1976), 279–285.

    Article  MATH  Google Scholar 

  57. V. Pták: Nondiscrete mathematical induction. Gen. Topol. Relat. mod. Anal. Algebra IV, Proc. 4th Prague topol. Symp. 1976, Part A, Lect. Notes Math. 609. 1977, pp. 166–178.

  58. V. Pták: What should be a rate of convergence? RAIRO, Anal. Numer. 11 (1977), 279–286.

    MathSciNet  MATH  Google Scholar 

  59. V. Pták: Stability of exactness. Commentat. math., spec. Vol. II, dedic. L. Orlicz (1979), 283–288.

  60. V. Pták: A rate of convergence. Numer. Funct. Anal. Optimization 1 (1979), 255–271.

    Article  MATH  Google Scholar 

  61. V. Pták: Factorization in Banach algebras. Stud. Math. 65 (1979), 279–285.

    MATH  Google Scholar 

  62. H. Ren, Q. Wu: Convergence ball of a modified secant method with convergence order 1.839… Appl. Math. Comput. 188 (2007), 281–285.

    Article  MathSciNet  MATH  Google Scholar 

  63. W. C. Rheinboldt: A unified convergence theory for a class of iterative processes. SIAM J. Numer. Anal. 5 (1968), 42–63.

    Article  MathSciNet  MATH  Google Scholar 

  64. R. A. Tapia: The Kantorovich theorem for Newton’s method. Am.Math. Mon. 78 (1971), 389–392.

    Article  MathSciNet  MATH  Google Scholar 

  65. Q. Wu, H. Ren: A note on some new iterative methods with third-order convergence. Appl. Math. Comput. 188 (2007), 1790–1793.

    Article  MathSciNet  MATH  Google Scholar 

  66. T. Yamamoto: A convergence theorem for Newton-like methods in Banach spaces. Numer. Math. 51 (1987), 545–557.

    Article  MathSciNet  MATH  Google Scholar 

  67. P. P. Zabrejko, D. F. Nguen: The majorant method in the theory of Newton-Kantorovich approximations and the Ptak error estimates. 9 (1987), 671–684.

    MathSciNet  MATH  Google Scholar 

  68. A. I. Zinčenko: Some approximate methods of solving equations with non-differentiable operators. Dopovidi Akad. Nauk Ukraïn. RSR (1963), 156–161. (In Ukrainian.)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis K. Argyros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Argyros, I.K., Hilout, S. Extending the applicability of Newton’s method using nondiscrete induction. Czech Math J 63, 115–141 (2013). https://doi.org/10.1007/s10587-013-0008-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-013-0008-2

Keywords

MSC 2010

Navigation