Log in

DEA\(^2\)H\(^2\): differential evolution architecture based adaptive hyper-heuristic algorithm for continuous optimization

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

This paper proposes a novel differential evolution (DE) architecture based hyper-heuristic algorithm (DEA\(^2\)H\(^2\)) for solving continuous optimization tasks. A representative hyper-heuristic algorithm consists of two main components: low-level and high-level components. In the low-level component, DEA\(^2\)H\(^2\) leverages ten DE-derived search operators as low-level heuristics (LLHs). In the high-level component, we incorporate a success-history-based mechanism inspired by the success-history-based parameter adaptation in success-history adaptive DE (SHADE). Specifically, if a parent individual successfully evolves an offspring individual using a specific search operator, that corresponding operator is preserved for subsequent iterations. On the contrary, if the evolution is unsuccessful, the search operator is replaced by random initialization. To validate the effectiveness of DEA\(^2\)H\(^2\), we conduct comprehensive numerical experiments on both CEC2020 and CEC2022 benchmark functions, as well as eight engineering problems. We compare the performance of DEA\(^2\)H\(^2\) against fifteen well-known metaheuristic algorithms (MA). Additionally, ablation experiments are performed to investigate the effectiveness of the success-history-based high-level component independently. The experimental results and statistical analyses affirm the superiority and robustness of DEA\(^2\)H\(^2\) across diverse optimization tasks, highlighting its potential as an effective tool for continuous optimization problems. The source code of this research can be downloaded from https://github.com/RuiZhong961230/DEA2H2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The source code of this research can be downloaded from https://github.com/RuiZhong961230/DEA2H2.

References

  1. Deng, L., Liu, S.: A multi-strategy improved slime mould algorithm for global optimization and engineering design problems. Comput. Methods Appl. Mech. Eng. 404, 115764 (2023). https://doi.org/10.1016/j.cma.2022.115764

    Article  MathSciNet  Google Scholar 

  2. Shoukat, R., **aoqiang, Z.: Upstream logistics optimization from Shanghai, China to Kasur, Pakistan: an implementation of mixed-integer linear programming. Transp. Res. Rec. 2678(1), 539–554 (2024). https://doi.org/10.1177/03611981231171157

    Article  Google Scholar 

  3. Zhao, S., Zhang, T., Cai, L., Yang, R.: Triangulation topology aggregation optimizer: a novel mathematics-based meta-heuristic algorithm for continuous optimization and engineering applications. Expert Syst. Appl. 238, 121744 (2024). https://doi.org/10.1016/j.eswa.2023.121744

    Article  Google Scholar 

  4. Deng, L., Liu, S.: Snow ablation optimizer: a novel metaheuristic technique for numerical optimization and engineering design. Expert Syst. Appl. 225, 120069 (2023). https://doi.org/10.1016/j.eswa.2023.120069

    Article  Google Scholar 

  5. Zhong, R., Peng, F., Yu, J., Munetomo, M.: Q-learning based vegetation evolution for numerical optimization and wireless sensor network coverage optimization. Alex. Eng. J. 87, 148–163 (2024). https://doi.org/10.1016/j.aej.2023.12.028

    Article  Google Scholar 

  6. Deng, L., Liu, S.: An enhanced slime mould algorithm based on adaptive grou** technique for global optimization. Expert Syst. Appl. 222, 119877 (2023). https://doi.org/10.1016/j.eswa.2023.119877

    Article  Google Scholar 

  7. Deng, L., Liu, S.: Incorporating q-learning and gradient search scheme into jaya algorithm for global optimization. Artif. Intell. Rev. (2023). https://doi.org/10.1007/s10462-023-10613-1

    Article  Google Scholar 

  8. Sörensen, K.: Metaheuristics—the metaphor exposed. Int. Trans. Oper. Res. (2013). https://doi.org/10.1111/itor.12001

    Article  Google Scholar 

  9. Aranha, C., Villalón, C., Campelo, F., Dorigo, M., Ruiz, R., Sevaux, M., Sörensen, K., Stützle, T.: Metaphor-based metaheuristics, a call for action: the elephant in the room. Swarm Intell. 16, 1–6 (2021). https://doi.org/10.1007/s11721-021-00202-9

    Article  Google Scholar 

  10. Camacho Villalón, C.L., Stützle, T., Dorigo, M.: Grey wolf, firefly and bat algorithms: Three widespread algorithms that do not contain any novelty. In: Swarm Intelligence, pp. 121–133. Springer, Cham (2020)

  11. Weyland, D.: A rigorous analysis of the harmony search algorithm: How the research community can be misled by a “novel’’ methodology. Int. J. Appl. Metaheuristic Comput. 1(2), 50–60 (2010). https://doi.org/10.4018/jamc.2010040104

    Article  Google Scholar 

  12. Camacho, C., Dorigo, M., Stützle, T.: The intelligent water drops algorithm: why it cannot be considered a novel algorithm: a brief discussion on the use of metaphors in optimization. Swarm Intell. (2019). https://doi.org/10.1007/s11721-019-00165-y

    Article  Google Scholar 

  13. Zhong, R., Yu, J., Chao, Z., Munetomo, M.: Surrogate ensemble-assisted hyper-heuristic algorithm for expensive optimization problems. Int. J. Comput. Intell. Syst. (2023). https://doi.org/10.1007/s44196-023-00346-y

    Article  Google Scholar 

  14. Zhao, F., Liu, Y., Zhu, N., Xu, T.: Jonrinaldi: a selection hyper-heuristic algorithm with q-learning mechanism. Appl. Soft Comput. 147, 110815 (2023). https://doi.org/10.1016/j.asoc.2023.110815

    Article  Google Scholar 

  15. Kelvin Ching Wei Lim, L.-P.W., Chin, J.F.: Simulated-annealing-based hyper-heuristic for flexible job-shop scheduling. Eng. Optim. 55(10), 1635–1651 (2023). https://doi.org/10.1080/0305215X.2022.2106477

    Article  Google Scholar 

  16. Zhao, F., Di, S., Cao, J., Tang, J.: Jonrinaldi: a novel cooperative multi-stage hyper-heuristic for combination optimization problems. Complex Syst. Model. Simul. 1(2), 91–108 (2021). https://doi.org/10.23919/CSMS.2021.0010

    Article  Google Scholar 

  17. Zhang, Q., Gao, H., Zhan, Z.-H., Li, J., Zhang, H.: Growth optimizer: a powerful metaheuristic algorithm for solving continuous and discrete global optimization problems. Knowl.-Based Syst. 261, 110206 (2023). https://doi.org/10.1016/j.knosys.2022.110206

    Article  Google Scholar 

  18. Qin, W., Zhuang, Z., Huang, Z., Huang, H.: A novel reinforcement learning-based hyper-heuristic for heterogeneous vehicle routing problem. Comput. Ind. Eng. 156, 107252 (2021). https://doi.org/10.1016/j.cie.2021.107252

    Article  Google Scholar 

  19. Tapia-Avitia, J.M., Cruz-Duarte, J.M., Amaya, I., Ortiz-Bayliss, J.C., Terashima-Marin, H., Pillay, N.: A primary study on hyper-heuristics powered by artificial neural networks for customising population-based metaheuristics in continuous optimisation problems. In: 2022 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2022). https://doi.org/10.1109/CEC55065.2022.9870275

  20. Zhong, R., Zhang, E., Munetomo, M.: Evolutionary multi-mode slime mold optimization: a hyper-heuristic algorithm inspired by slime mold foraging behaviors. J. Supercomput. (2024). https://doi.org/10.1007/s11227-024-05909-0

    Article  Google Scholar 

  21. Tanabe, R., Fukunaga, A.: Success-history based parameter adaptation for differential evolution. In: 2013 IEEE Congress on Evolutionary Computation, pp. 71–78 (2013). https://doi.org/10.1109/CEC.2013.6557555

  22. Choong, S.S., Wong, L.-P., Lim, C.P.: Automatic design of hyper-heuristic based on reinforcement learning. Inf. Sci. 436–437, 89–107 (2018). https://doi.org/10.1016/j.ins.2018.01.005

    Article  MathSciNet  Google Scholar 

  23. Meng, Z., Chen, Y.: Differential evolution with exponential crossover can be also competitive on numerical optimization. Appl. Soft Comput. 146, 110750 (2023). https://doi.org/10.1016/j.asoc.2023.110750

    Article  Google Scholar 

  24. Nguyen, T.: A framework of optimization functions using Numpy (OpFuNu) for optimization problems. Zenodo (2020). https://doi.org/10.5281/zenodo.3620960

    Article  Google Scholar 

  25. Thieu, N.V.: ENOPPY: a Python library for engineering optimization problems. Zenodo (2023). https://doi.org/10.5281/zenodo.7953206

    Article  Google Scholar 

  26. Bayzidi, H., Talatahari, S., Saraee, M., Lamarche, C.-P.: Social network search for solving engineering optimization problems. Comput. Intell. Neurosci. 2021, 1–32 (2021). https://doi.org/10.1155/2021/8548639

    Article  Google Scholar 

  27. Srinivas, M., Patnaik, L.M.: Genetic algorithms: a survey. Computer 27(6), 17–26 (1994). https://doi.org/10.1109/2.294849

    Article  Google Scholar 

  28. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4, pp. 1942–19484 (1995). https://doi.org/10.1109/ICNN.1995.488968

  29. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997). https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  Google Scholar 

  30. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159–195 (2001). https://doi.org/10.1162/106365601750190398

    Article  Google Scholar 

  31. Zhang, J., Sanderson, A.C.: Jade: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009). https://doi.org/10.1109/TEVC.2009.2014613

    Article  Google Scholar 

  32. Tanabe, R., Fukunaga, A.S.: Improving the search performance of shade using linear population size reduction. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1658–1665 (2014). https://doi.org/10.1109/CEC.2014.6900380

  33. Yang, X.-S., Deb, S.: Cuckoo search via lévy flights. In: 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), pp. 210–214 (2009). https://doi.org/10.1109/NABIC.2009.5393690

  34. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014). https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  35. Mirjalili, S.: Sca: a sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 96, 120–133 (2016). https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  36. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016). https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  37. Chopra, N., Mohsin Ansari, M.: Golden jackal optimization: a novel nature-inspired optimizer for engineering applications. Expert Syst. Appl. 198, 116924 (2022). https://doi.org/10.1016/j.eswa.2022.116924

    Article  Google Scholar 

  38. Hashim, F.A., Mostafa, R.R., Hussien, A.G., Mirjalili, S., Sallam, K.M.: Fick’s law algorithm: a physical law-based algorithm for numerical optimization. Knowl.-Based Syst. 260, 110146 (2023). https://doi.org/10.1016/j.knosys.2022.110146

    Article  Google Scholar 

  39. Ahmadianfar, I., Heidari, A.A., Noshadian, S., Chen, H., Gandomi, A.H.: Info: an efficient optimization algorithm based on weighted mean of vectors. Expert Syst. Appl. 195, 116516 (2022). https://doi.org/10.1016/j.eswa.2022.116516

    Article  Google Scholar 

  40. Su, H., Zhao, D., Heidari, A.A., Liu, L., Zhang, X., Mafarja, M., Chen, H.: Rime: a physics-based optimization. Neurocomputing 532, 183–214 (2023). https://doi.org/10.1016/j.neucom.2023.02.010

    Article  Google Scholar 

  41. Holm, S.: A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6(2), 65–70 (1979)

    MathSciNet  Google Scholar 

  42. Jackson, W.G., Özcan, E., Drake, J.H.: Late acceptance-based selection hyper-heuristics for cross-domain heuristic search. In: 2013 13th UK Workshop on Computational Intelligence (UKCI), pp. 228–235 (2013). https://doi.org/10.1109/UKCI.2013.6651310

  43. Köppen, M.: The curse of dimensionality. In: 5th Online World Conference on Soft Computing in Industrial Applications (WSC5), vol. 1, pp. 4–8 (2000)

  44. Gu, Q., Li, S., Liao, Z.: Solving nonlinear equation systems based on evolutionary multitasking with neighborhood-based speciation differential evolution. Expert Syst. Appl. 238, 122025 (2024). https://doi.org/10.1016/j.eswa.2023.122025

    Article  Google Scholar 

  45. Layeb, A.: Differential evolution algorithms with novel mutations, adaptive parameters, and weibull flight operator. Soft. Comput. (2024). https://doi.org/10.1007/s00500-023-09561-3

    Article  Google Scholar 

  46. Zhong, R., Zhang, E., Munetomo, M.: Cooperative coevolutionary differential evolution with linkage measurement minimization for large-scale optimization problems in noisy environments. Complex Intell. Syst. 9, 4439–4456 (2023). https://doi.org/10.1007/s40747-022-00957-6

    Article  Google Scholar 

  47. Bull, L., Liu, H.: On cooperative coevolution and global crossover. IEEE Trans. Evol. Comput. (2024). https://doi.org/10.1109/TEVC.2024.3355776

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JST SPRING Grant Number JPMJSP2119.

Author information

Authors and Affiliations

Authors

Contributions

RZ: conceptualization, methodology, investigation, writing—original draft, writing—review & editing, and funding acquisition. JY: investigation, methodology, formal analysis, writing—review & editing, and project administration.

Corresponding author

Correspondence to Jun Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, R., Yu, J. DEA\(^2\)H\(^2\): differential evolution architecture based adaptive hyper-heuristic algorithm for continuous optimization. Cluster Comput (2024). https://doi.org/10.1007/s10586-024-04587-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10586-024-04587-0

Keywords

Navigation