Log in

A hybrid northern goshawk optimization algorithm based on cluster collaboration

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

To address the problems that the northern goshawk optimization algorithm (NGO) has a slow convergence speed and is highly susceptible to fall into local optimal solutions, this paper proposes a hybrid northern goshawk optimization algorithm based on cluster collaboration (HHNGO), which effectively improves the convergence speed and alleviates the problem of falling into the local optimum. Firstly, piecewise chaotic map** is used to initialize the population, which makes the initial population more evenly distributed in the search space and improves the quality of the initial solution. Secondly, the prey recognition position update formula in the harris hawk optimization algorithm is introduced to improve the exploration phase. Meanwhile, a nonlinear factor can be added to accelerate the process which reaches the minimum difference between the prey best position and the average position of the eagle group. Thus the iteration number is reduced during the search process, and the convergence speed of the algorithm is improved. Finally, the Cauchy variation strategy is used to perturb the optimal solution of the algorithm. Then, its probability jum** out of the local optimal solution is increased, and the global search capability is enhanced. The experimental comparison is carried out to analyze the 12 standard functions, CEC-2019 and CEC-2021 test functions in HHNGO and PSO, GWO, POA, HHO, NGO, INGO, DFPSO, MGLMRFO, GMPBSA algorithms, and HHNGO is applied in PID parameter rectification. The results prove the feasibility and superiority of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Joseph, S.B., Dada, E.G., Abidemi, A., Oyewola, D.O., Khammas, B.M.: Metaheuristic algorithms for PID controller parameters tuning: review, approaches and open problems. Heliyon (2022)

  2. Ghith, E.S., Tolba, F.A.A.: Real-time implementation of tuning PID controller based on whale optimization algorithm for micro-robotics system, pp. 103–109. IEEE (2022)

  3. Abood, L.H.: Optimal modified pid controller for automatic voltage regulation system. In: Conference Proceedings, vol. 2415. AIP Publishing (2022)

  4. Balasaheb, W.V., Uttam, C.: Novel intelligent optimization algorithm based fractional order adaptive proportional integral derivative controller for linear time invariant based biological systems. J. Electr. Eng. Technol. 17(1), 565–580 (2022)

    Article  Google Scholar 

  5. Chen, K., **ao, B., Wang, C., Liu, X., Liang, S., Zhang, X.: Cuckoo coupled improved grey wolf algorithm for PID parameter tuning. Appl. Sci. 13(23), 12944 (2023)

    Article  Google Scholar 

  6. Zhang, J., Zhang, T., Zhang, G., Kong, M.: Parameter optimization of PID controller based on an enhanced whale optimization algorithm for AVR system. Oper. Res. Int. J. 23(3), 44 (2023)

    Article  Google Scholar 

  7. Banerjee, A., Singh, D., Sahana, S., Nath, I.: Impacts of metaheuristic and swarm intelligence approach in optimization. In: AIP Conference Proceedings, pp. 71–99 (2022)

  8. Emambocus, B.A.S., Jasser, M.B., Amphawan, A.: A survey on the optimization of artificial neural networks using swarm intelligence algorithms. IEEE Access 11, 1280–1294 (2023)

    Article  Google Scholar 

  9. Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)

    Article  Google Scholar 

  10. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)

    Article  Google Scholar 

  11. Venter, G., Sobieszczanski-Sobieski, J.: Particle swarm optimization. AIAA J. 41(8), 1583–1589 (2003)

    Article  Google Scholar 

  12. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Article  Google Scholar 

  13. Xue, J., Shen, B.: A novel swarm intelligence optimization approach: sparrow search algorithm. Syst. Sci. Control Eng. 8(1), 22–34 (2020)

    Article  Google Scholar 

  14. Dehghani, M., Hubálovskỳ, Š, Trojovskỳ, P.: Northern goshawk optimization: a new swarm-based algorithm for solving optimization problems. IEEE Access 9, 162059–162080 (2021)

    Article  Google Scholar 

  15. Ngo, T.Q., Nguyen, L.Q., Tran, V.Q.: Novel hybrid machine learning models including support vector machine with meta-heuristic algorithms in predicting unconfined compressive strength of organic soils stabilised with cement and lime. Int. J. Pavement Eng. 1–18 (2022)

  16. Fahim, K.E., Silva, L.C.D., Hussain, F., Yassin, H.: A state-of-the-art review on optimization methods and techniques for economic load dispatch with photovoltaic systems: Progress, challenges, and recommendations. Sustainability 15(15), 11837 (2023)

    Article  Google Scholar 

  17. Zhou, Y., Wang, G., Wu, Y., Zhang, W.: Evaluation and prediction of sustained competitive advantage of baijiu enterprises based on entropy weight-topsis and ingo-bp neural network. Front. Comput. Intell. Syst. 7(1), 53–63 (2024)

    Article  Google Scholar 

  18. Li, K., Huang, H., Fu, S., Ma, C., Fan, Q., Zhu, Y.: A multi-strategy enhanced northern goshawk optimization algorithm for global optimization and engineering design problems. Comput. Methods Appl. Mech. Eng. 415, 116199 (2023)

    Article  MathSciNet  Google Scholar 

  19. Pan, X.-Y., Wang, S.-S., Yang, Y.-T., Yang, T.-Z., Tai, Y.-Z.: A northern goshawk optimization algorithm with improved elite opposition-based learning. In: Proceedings of the 7th International Conference on Control Engineering and Artificial Intelligence, pp. 48–53 (2023)

  20. Peng, L.B.G.Z.G.: Research on the application of improved northern eagle algorithm in photovoltaic arrays. J. Electron. Meas. Instrum. 37(7), 131–139 (2023). https://doi.org/10.13382/j.jemi.B2306388

    Article  Google Scholar 

  21. Sun, W., Ma, H., Wang, S.: Application of SCNGO-VMD-SVM in identification of gas insulated switchgear partial discharge. IEEE Access 12, 43838–43848 (2024)

    Article  Google Scholar 

  22. Zhan, C., Zhang, X., Tian, G., Pham, D.T., Ivanov, M., Aleksandrov, A., Fu, C., Zhang, J., Wu, Z.: Environment-oriented disassembly planning for end-of-life vehicle batteries based on an improved northern goshawk optimisation algorithm. Environ. Sci. Pollut. Res. 30(16), 47956–47971 (2023)

    Article  Google Scholar 

  23. Zhu, D., Wang, S., Zhou, C., Yan, S.: Manta ray foraging optimization based on mechanics game and progressive learning for multiple optimization problems. Appl. Soft Comput. 145, 110561 (2023)

    Article  Google Scholar 

  24. Zhang, Y.: Backtracking search algorithm driven by generalized mean position for numerical and industrial engineering problems. Artif. Intell. Rev. 56(10), 11985–12031 (2023)

    Article  Google Scholar 

  25. Rezaei, F., Safavi, H.R.: Sustainable conjunctive water use modeling using dual fitness particle swarm optimization algorithm. Water Resour. Manag. 36(3), 989–1006 (2022)

    Article  Google Scholar 

  26. Xue, J., Shen, B.: Dung beetle optimizer: a new meta-heuristic algorithm for global optimization. J. Supercomput. 79(7), 7305–7336 (2023)

    Article  Google Scholar 

  27. Kocak, O., Erkan, U., Toktas, A., Gao, S.: Pso-based image encryption scheme using modular integrated logistic exponential map. Expert Syst. Appl. 237, 121452 (2024)

    Article  Google Scholar 

  28. Akraam, M., Rashid, T., Zafar, S.: An image encryption scheme proposed by modifying chaotic tent map using fuzzy numbers. Multimed. Tools Appl. 82(11), 16861–16879 (2023)

    Article  Google Scholar 

  29. Estevez, G., Guarino, P.: Renormalization of bicritical circle maps. Arnold Math. J. 9(1), 69–104 (2023)

    Article  MathSciNet  Google Scholar 

  30. Abu-Ein, A.: An effective chaotic image encryption algorithm based on piecewise non-linear chaotic map. Inf. Sci. Lett. Nat. 12, 1173–1181 (2023)

    Article  Google Scholar 

  31. Ikotun, A.M., Ezugwu, A.E., Abualigah, L., Abuhaija, B., Heming, J.: K-means clustering algorithms: aD comprehensive review, variants analysis, and advances in the era of big data. Inf. Sci. (2022)

  32. Peng, Z., Pirozmand, P., **ong, Y.: Improved harris hawks optimizer algorithm to solve the multi-depot open vehicle routing problem. Evolut. Intell. 1–19 (2024)

  33. Qaraad, M., Amjad, S., Hussein, N.K., Farag, M., Mirjalili, S., Elhosseini, M.A.: Quadratic interpolation and a new local search approach to improve particle swarm optimization: solar photovoltaic parameter estimation. Expert Syst. Appl. 236, 121417 (2024)

    Article  Google Scholar 

  34. Huang, L., Fu, Q., Tong, N.: An improved harris hawks optimization algorithm and its application in grid map path planning. Biomimetics 8(5), 428 (2023)

    Article  Google Scholar 

  35. Dokeroglu, T., Ozdemir, Y.S.: A new robust harris hawk optimization algorithm for large quadratic assignment problems. Neural Comput. Appl. 35(17), 12531–12544 (2023)

    Article  Google Scholar 

  36. Gharehchopogh, F.S., Namazi, M., Ebrahimi, L., Abdollahzadeh, B.: Advances in sparrow search algorithm: a comprehensive survey. Arch. Comput. Methods Eng. 30(1), 427–455 (2023)

    Article  Google Scholar 

  37. Ranjbarzadeh, R., Zarbakhsh, P., Caputo, A., Tirkolaee, E.B., Bendechache, M.: Brain tumor segmentation based on optimized convolutional neural network and improved chimp optimization algorithm. Comput. Biol. Med. 168, 107723 (2024)

    Article  Google Scholar 

  38. Singh, L.K., Khanna, M., Garg, H., Singh, R.: Emperor penguin optimization algorithm-and bacterial foraging optimization algorithm-based novel feature selection approach for glaucoma classification from fundus images. Soft. Comput. 28(3), 2431–2467 (2024)

    Article  Google Scholar 

  39. Yu, F., Guan, J., Wu, H., Chen, Y., **a, X.: Lens imaging opposition-based learning for differential evolution with cauchy perturbation. Appl. Soft Comput. 152, 111211 (2024)

    Article  Google Scholar 

  40. Yang, X., Guan, J.: Pi parameters tuning for frequency tracking control of wireless power transfer system based on improved whale optimization algorithm. IEEE Access (2024)

  41. Zhang, X., Liu, Q., Bai, X.: Improved slime mould algorithm based on hybrid strategy optimization of cauchy mutation and simulated annealing. PLoS ONE 18(1), 0280512 (2023)

    Article  Google Scholar 

  42. Azizi, M., Talatahari, S., Gandomi, A.H.: Fire hawk optimizer: a novel metaheuristic algorithm. Artif. Intell. Rev. 56(1), 287–363 (2023)

    Article  Google Scholar 

  43. Tejani, G.G., Khishe, M.: Parallel sub-class modified teaching–learning-based optimization. Available at SSRN 4719068

  44. Gupta, S., Deep, K.: A novel random walk grey wolf optimizer. Swarm Evol. Comput. 44, 101–112 (2019)

    Article  Google Scholar 

  45. Trojovskỳ, P., Dehghani, M.: Pelican optimization algorithm: a novel nature-inspired algorithm for engineering applications. Sensors 22(3), 855 (2022)

    Article  Google Scholar 

  46. Zhang, B., Wang, R., Jiang, D., Wang, Y., Wang, J., Ruan, B., et al.: Parameter identification of proton exchange membrane fuel cell based on swarm intelligence algorithm. Energy 283, 128935 (2023)

    Article  Google Scholar 

  47. Zhao, S., Zhang, T., Cai, L., Yang, R.: Triangulation topology aggregation optimizer: a novel mathematics-based meta-heuristic algorithm for continuous optimization and engineering applications. Expert Syst. Appl. 238, 121744 (2024)

    Article  Google Scholar 

  48. BAS, E.: Bindmo: a new binary dwarf mongoose optimization algorithm on based z-shaped, u-shaped, and taper-shaped transfer functions for cec-2017 benchmarks. Neural Comput. Appl. 1–33 (2024)

  49. Pham, V.H., Nguyen Dang, N.T., Nguyen, V.N.: Enhancing engineering optimization using hybrid sine cosine algorithm with roulette wheel selection and opposition-based learning. Sci. Rep. 14(1), 694 (2024)

    Article  Google Scholar 

  50. Kiruba, R., Malarvizhi, K.: Fractional PID with genetic algorithm approach for industrial tank level control process. Electri. Power Components Syst. 1–15 (2024)

  51. Shi, R.: Improvement of predictive control algorithm based on fuzzy fractional order PID. J. Intell. Syst. 32(1), 20220288 (2023)

    Google Scholar 

Download references

Funding

This work was supported by the Henan Province Key R&D Project, China under Grant No. 241111222400, and the Joint Fund Key Project of Science and Technology R&D Plan of Henan Province, China under Grant No. 225200810029.

Author information

Authors and Affiliations

Authors

Contributions

Changjun Wu: Conceptualizatio; Methodology; Analysis; Resources; Writing areview and editing; Investigation; Supervision. Qingzhen Li: Data curation: Investigation: Software; Validation; riting aoriginal draftand editing. Qiaohua Wang: Conceptualizatio; Methodology; Analysis; Resources; Investigation; Supervision. Huanlong Zhang: Conceptualizatio; Methodology; Validation Analysis; Review andediting. **aohui Song: Data curation; Investigation; Software; Resources; Data curation.

Corresponding author

Correspondence to **aohui Song.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Li, Q., Wang, Q. et al. A hybrid northern goshawk optimization algorithm based on cluster collaboration. Cluster Comput (2024). https://doi.org/10.1007/s10586-024-04571-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10586-024-04571-8

Keywords

Navigation