Log in

Eel and grouper optimizer: a nature-inspired optimization algorithm

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

This paper proposes a meta-heuristic called Eel and Grouper Optimizer (EGO). The EGO algorithm is inspired by the symbiotic interaction and foraging strategy of eels and groupers in marine ecosystems. The algorithm’s efficacy is demonstrated through rigorous evaluation using nineteen benchmark functions, showcasing its superior performance compared to established meta-heuristic algorithms. The findings and results on the benchmark functions demonstrate that the EGO algorithm outperforms well-known meta-heuristics. This work also considers solving a wide range of real-world practical engineering case studies including tension/compression spring, pressure vessel, piston lever, and car side impact, and the CEC 2020 Real-World Benchmark using EGO to illustrate the practicality of the proposed algorithm when dealing with the challenges of real search spaces with unknown global optima. The results show that the proposed EGO algorithm is a reliable soft computing technique for real-world optimization problems and can efficiently outperform the existing algorithms in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Algorithm 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data produced during the current study can be obtained from the corresponding author upon reasonable request.

References

  1. Khanduja, N., Bhushan, B.: Recent Advances and Application of Metaheuristic Algorithms: A Survey (2014–2020), pp. 207–228. Algorithms and Applications, Metaheuristic and Evolutionary Computation (2021)

    Google Scholar 

  2. Mohammadzadeh, A., Masdari, M., Gharehchopogh, F.S.: Energy and cost-aware workflow scheduling in cloud computing data centers using a multi-objective optimization algorithm. J. Netw. Syst. Manage. 29(3), 1–34 (2021)

    Article  Google Scholar 

  3. Mohammadzadeh, A., Masdari, M., Gharehchopogh, F.S., Jafarian, A.: Improved chaotic binary grey wolf optimization algorithm for workflow scheduling in green cloud computing. Evol. Intell. 14(4), 1997–2025 (2021)

    Article  Google Scholar 

  4. Mohammadzadeh, A., Masdari, M., Gharehchopogh, F.S., Jafarian, A.: A hybrid multi-objective metaheuristic optimization algorithm for scientific workflow scheduling. Clust. Comput. 24(2), 1479–1503 (2021)

    Article  Google Scholar 

  5. Cheng, M.-Y., Prayogo, D.: Symbiotic organisms search a new metaheuristic optimization algorithm. Comput. Struct. 139, 98–112 (2014)

    Article  Google Scholar 

  6. Mohammadzadeh, A., Chhabra, A., Mirjalili, S., Faraji, A.: Chapter 4 – Use of whale optimization algorithm and its variants for cloud task scheduling: a review. In: Mirjalili, S. (ed.) Handbook of Whale Optimization Algorithm, pp. 47–68. Academic Press (2024)

    Chapter  Google Scholar 

  7. Gandomi, A.H., Alavi, A.H.: Krill herd: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4831–4845 (2012)

    Article  MathSciNet  Google Scholar 

  8. Mohammadzadeh, A., Akbari Zarkesh, M., Haji Shahmohamd, P., Akhavan, J., Chhabra, A.: Energy-aware workflow scheduling in fog computing using a hybrid chaotic algorithm. J. Supercomput. 79(16), 18569–18604 (2023)

    Article  Google Scholar 

  9. Lourenço HR, Martin OC, and Stützle T (2003) “Iterated local search,” in Handbook of metaheuristics: Springer, pp. 320–353.

  10. Slowik, A., Kwasnicka, H.: Evolutionary algorithms and their applications to engineering problems. Neural Comput. Appl. 32, 12363–12379 (2020)

    Article  Google Scholar 

  11. Mei, Y., Tan, G., Liu, Z.: An improved brain-inspired emotional learning algorithm for fast classification. Algorithms 10(2), 70 (2017)

    Article  MathSciNet  Google Scholar 

  12. Cai, X., et al.: An improved quantum-inspired cooperative co-evolution algorithm with muli-strategy and its application. Expert Syst. Appl. 171, 114629 (2021)

    Article  Google Scholar 

  13. Song, Z., Wang, H., He, C., **, Y.: A kriging-assisted two-archive evolutionary algorithm for expensive many-objective optimization. IEEE Trans. Evol. Comput. 25(6), 1013–1027 (2021)

    Article  Google Scholar 

  14. Li, J.Y., Zhan, Z.H., Wang, H., Zhang, J.: Data-driven evolutionary algorithm with perturbation-based ensemble surrogates. IEEE Trans. Cybern. 51(8), 3925–3937 (2021)

    Article  Google Scholar 

  15. Zhao, F., He, X., Wang, L.: A two-stage cooperative evolutionary algorithm with problem-specific knowledge for energy-efficient scheduling of no-wait flow-shop problem. IEEE Trans. Cybern. 51(11), 5291–5303 (2021)

    Article  Google Scholar 

  16. Tian Y, Wang R, Zhang Y, and Zhang X, “Adaptive population sizing for multi-population based constrained multi-objective optimization,” Available at SSRN 4551991.

  17. Tang, J., Liu, G., Pan, Q.: A review on representative swarm intelligence algorithms for solving optimization problems: applications and trends. IEEE/CAA J. Autom. Sin. 8(10), 1627–1643 (2021)

    Article  MathSciNet  Google Scholar 

  18. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Article  Google Scholar 

  19. Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 96, 120–133 (2016)

    Article  Google Scholar 

  20. Mirjalili, S., Mirjalili, S.M., Hatamlou, A.: Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput. Appl. 27(2), 495–513 (2016)

    Article  Google Scholar 

  21. Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)

    Article  Google Scholar 

  22. Trojovská, E., Dehghani, M.: A new human-based metahurestic optimization method based on mimicking cooking training. Sci. Rep. 12(1), 14861 (2022)

    Article  Google Scholar 

  23. Ballings, M., Van den Poel, D., Bogaert, M.: Social media optimization: identifying an optimal strategy for increasing network size on facebook. Omega 59, 15–25 (2016)

    Article  Google Scholar 

  24. Abdullah, J.M., Ahmed, T.: Fitness dependent optimizer: inspired by the bee swarming reproductive process. IEEE Access 7, 43473–43486 (2019)

    Article  Google Scholar 

  25. Khishe, M., Mosavi, M.R.: Chimp optimization algorithm. Expert Syst. Appl. 149, 113338 (2020)

    Article  Google Scholar 

  26. Ahmadianfar, I., Heidari, A.A., Gandomi, A.H., Chu, X., Chen, H.: RUN beyond the metaphor: an efficient optimization algorithm based on runge kutta method. Expert Syst. Appl. 181, 115079 (2021)

    Article  Google Scholar 

  27. Ahmadianfar, I., Heidari, A.A., Noshadian, S., Chen, H., Gandomi, A.H.: INFO: An efficient optimization algorithm based on weighted mean of vectors. Expert Syst. Appl. 195, 116516 (2022)

    Article  Google Scholar 

  28. Houssein, E.H., Oliva, D., Samee, N.A., Mahmoud, N.F., Emam, M.M.: Liver cancer algorithm: a novel bio-inspired optimizer. Comput. Biol. Med. 165, 107389 (2023)

    Article  Google Scholar 

  29. Mohammadzadeh, A., Javaheri, D., Artin, J.: Chaotic hybrid multi-objective optimization algorithm for scientific workflow scheduling in multisite clouds. J. Oper. Res. Soc. 75(2), 314–335 (2024)

    Article  Google Scholar 

  30. Arora, S., Singh, S.: Butterfly optimization algorithm: a novel approach for global optimization. Soft. Comput. 23(3), 715–734 (2019)

    Article  Google Scholar 

  31. Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., Chen, H.: Harris hawks optimization: algorithm and applications. Futur. Gener. Comput. Syst. 97, 849–872 (2019)

    Article  Google Scholar 

  32. Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., Gandomi, A.H.: The arithmetic optimization algorithm. Comput. Methods Appl. Mech. Eng. 376, 113609 (2021)

    Article  MathSciNet  Google Scholar 

  33. Faramarzi, A., Heidarinejad, M., Stephens, B., Mirjalili, S.: Equilibrium optimizer: a novel optimization algorithm. Knowl.-Based Syst. 191, 105190 (2020)

    Article  Google Scholar 

  34. Chou, J.-S., Truong, D.-N.: A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean. Appl. Math. Comput. 389, 125535 (2021)

    Article  MathSciNet  Google Scholar 

  35. Kumar, N., Singh, N., Vidyarthi, D.P.: Artificial lizard search optimization (ALSO): a novel nature-inspired meta-heuristic algorithm. Soft. Comput. 25(8), 6179–6201 (2021)

    Article  Google Scholar 

  36. Abualigah, L., Yousri, D., Abd Elaziz, M., Ewees, A.A., Al-Qaness, M.A., Gandomi, A.H.: Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput. Ind. Eng. 157, 107250 (2021)

    Article  Google Scholar 

  37. Yang, Y., Chen, H., Heidari, A.A., Gandomi, A.H.: Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Syst. Appl. 177, 114864 (2021)

    Article  Google Scholar 

  38. Tu, J., Chen, H., Wang, M., Gandomi, A.H.: The colony predation algorithm. J. Bionic Eng. 18(3), 674–710 (2021)

    Article  Google Scholar 

  39. Seyyedabbasi, A., Kiani, F.: Sand cat swarm optimization: a nature-inspired algorithm to solve global optimization problems. Eng. Comput. 39(4), 2627–2651 (2023)

    Article  Google Scholar 

  40. Mohammed, H., Rashid, T.: FOX: a FOX-inspired optimization algorithm. Appl. Intell. 53(1), 1030–1050 (2023)

    Article  Google Scholar 

  41. Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)

    Article  Google Scholar 

  42. Gandomi, A.H., Yang, X.-S., Alavi, A.H.: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng. Comput. 29(1), 17–35 (2013)

    Article  Google Scholar 

  43. Shah-Hosseini, H.: Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation. Int. J. Comput. Sci. Eng. 6(1–2), 132–140 (2011)

    Google Scholar 

  44. Kaveh, A., Ilchi Ghazaan, M.: Vibrating particles system algorithm for truss optimization with multiple natural frequency constraints. Acta Mech. 228(1), 307–322 (2017)

    Article  MathSciNet  Google Scholar 

  45. Kaveh, A., Mahdavi, V.R.: Colliding bodies optimization: a novel meta-heuristic method. Comput. Struct. 139, 18–27 (2014)

    Article  Google Scholar 

  46. Kaveh, A., Bakhshpoori, T.: Water evaporation optimization: a novel physically inspired optimization algorithm. Comput. Struct. 167, 69–85 (2016)

    Article  Google Scholar 

  47. Kaveh, A., Talatahari, S.: Optimal design of skeletal structures via the charged system search algorithm. Struct. Multidiscip. Optim. 41(6), 893–911 (2010)

    Article  Google Scholar 

  48. Eskandar, H., Sadollah, A., Bahreininejad, A., Hamdi, M.: Water cycle algorithm–a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 110, 151–166 (2012)

    Article  Google Scholar 

  49. Abdullahi, M., Ngadi, M.A., Dishing, S.I., Abdulhamid, Si.M., Usman, M.J.: A survey of symbiotic organisms search algorithms and applications. Neural Comput. Appl. 32(2), 547–566 (2020)

    Article  Google Scholar 

  50. Ezugwu, A.E., Adeleke, O.J., Akinyelu, A.A., Viriri, S.: A conceptual comparison of several metaheuristic algorithms on continuous optimisation problems. Neural Comput. Appl. 32(10), 6207–6251 (2020)

    Article  Google Scholar 

  51. De Waal, F.B.: Fishy cooperation. PLoS Biol. 4(12), e444 (2006)

    Article  Google Scholar 

  52. Gilby, I.C., Connor, R.C.: The role of intelligence in group hunting: are chimpanzees different from other social predators. In: Ross, S.R., Matsuzawa, T., Lonsdorf, E.V. (eds.) The mind of the chimpanzee: ecological and experimental perspectives, pp. 220–233. University of Chicago Press (2010)

    Google Scholar 

  53. Herrera C and Park HM, “Cooperative Hunting Behavior of Moray Eels and Groupers.”

  54. Bshary, R., Hohner, A., Ait-el-Djoudi, K., Fricke, H.: Interspecific communicative and coordinated hunting between groupers and giant moray eels in the Red Sea. PLoS Biol. 4(12), e431 (2006)

    Article  Google Scholar 

  55. Molga, M., Smutnicki, C.: Test functions for optimization needs. Test functions for optimization needs 101, 48 (2005)

    Google Scholar 

  56. Yang X-S (2010) “Test problems in optimization,” ar**v preprint ar**v:1008.0549.

  57. Liang J-J, Suganthan PN, and Deb K (2005) “Novel composition test functions for numerical global optimization,” in Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005., pp. 68–75: IEEE.

  58. Suganthan, P.N., et al.: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL report 2005005(2005), 2005 (2005)

    Google Scholar 

  59. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  60. Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

    Article  Google Scholar 

  61. Van den Bergh, F., Engelbrecht, A.P.: A study of particle swarm optimization particle trajectories. Inf. Sci. 176(8), 937–971 (2006)

    Article  MathSciNet  Google Scholar 

  62. He X-S, Fan Q-W, Karamanoglu M, and Yang X-S (2019) “Comparison of constraint-handling techniques for metaheuristic optimization,” in International conference on computational science, pp. 357–366: Springer.

  63. Li, K., Chen, R., Fu, G., Yao, X.: Two-archive evolutionary algorithm for constrained multiobjective optimization. IEEE Trans. Evol. Comput. 23(2), 303–315 (2018)

    Article  Google Scholar 

  64. Yeniay, Ö.: Penalty function methods for constrained optimization with genetic algorithms. Math. Comput. Appl. 10(1), 45–56 (2005)

    MathSciNet  Google Scholar 

  65. Kuri-Morales AF and Gutiérrez-García J (2002) “Penalty function methods for constrained optimization with genetic algorithms: A statistical analysis,” in Mexican international conference on artificial intelligence, pp. 108–117: Springer.

  66. Kumar A, Wu G, Ali MZ, Mallipeddi R, Suganthan PN, and Das S (2020) “Guidelines for real-world single-objective constrained optimisation competition,” Technical report.

  67. Kumar, A., Wu, G., Ali, M.Z., Mallipeddi, R., Suganthan, P.N., Das, S.: A test-suite of non-convex constrained optimization problems from the real-world and some baseline results. Swarm Evol. Comput. 56, 100693 (2020)

    Article  Google Scholar 

  68. Arora, J.: Introduction to optimum design. Elsevier (2004)

    Book  Google Scholar 

  69. Belegundu, A.D., Arora, J.S.: A study of mathematical programming methods for structural optimization. part i: theory. Int. J. Numer. Meth. Eng. 21(9), 1583–1599 (1985)

    Article  Google Scholar 

  70. Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 89, 228–249 (2015)

    Article  Google Scholar 

  71. Dhiman, G., Kumar, V.: Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv. Eng. Softw. 114, 48–70 (2017)

    Article  Google Scholar 

  72. Mahdavi, M., Fesanghary, M., Damangir, E.: An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput. 188(2), 1567–1579 (2007)

    Article  MathSciNet  Google Scholar 

  73. Mezura-Montes, E., Coello, C.A.C.: An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. Int. J. Gen. Syst. 37(4), 443–473 (2008)

    Article  MathSciNet  Google Scholar 

  74. He, Q., Wang, L.: An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng. Appl. Artif. Intell. 20(1), 89–99 (2007)

    Article  Google Scholar 

  75. Huang, F.-Z., Wang, L., He, Q.: An effective co-evolutionary differential evolution for constrained optimization. Appl. Math. Comput. 186(1), 340–356 (2007)

    Article  MathSciNet  Google Scholar 

  76. Hayyolalam, V., Kazem, A.A.P.: Black widow optimization algorithm: a novel meta-heuristic approach for solving engineering optimization problems. Eng. Appl. Artif. Intell. 87, 103249 (2020)

    Article  Google Scholar 

  77. Liu, H., Cai, Z., Wang, Y.: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl. Soft Comput. 10(2), 629–640 (2010)

    Article  Google Scholar 

  78. Zhong, C., Li, G., Meng, Z.: Beluga whale optimization: a novel nature-inspired metaheuristic algorithm. Knowl.-Based Syst. 251, 109215 (2022)

    Article  Google Scholar 

  79. Jafari, M., Salajegheh, E., Salajegheh, J.: Elephant clan optimization: a nature-inspired metaheuristic algorithm for the optimal design of structures. Appl. Soft Comput. 113, 107892 (2021)

    Article  Google Scholar 

  80. Hashim, F.A., Houssein, E.H., Hussain, K., Mabrouk, M.S., Al-Atabany, W.: Honey badger algorithm: new metaheuristic algorithm for solving optimization problems. Math. Comput. Simul 192, 84–110 (2022)

    Article  MathSciNet  Google Scholar 

  81. Sandgren, E.: Nonlinear integer and discrete programming in mechanical design optimization. J. mech. transm. autom. des. 112(2), 223–229 (1990)

    Article  Google Scholar 

  82. Kannan, B., Kramer, S.N.: An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J. Mech. Des. 116(2), 405–411 (1994)

    Article  Google Scholar 

  83. Coello Coello, C.A., Mezura Montes, E.: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Adv. Eng. Inform. 16(3), 193–203 (2002)

    Article  Google Scholar 

  84. Kaveh, A., Talatahari, S.: An improved ant colony optimization for constrained engineering design problems. Eng. Comput. 27(1), 155–182 (2010)

    Article  Google Scholar 

  85. Chen, Y., Wang, N.: Cuckoo search algorithm with explosion operator for modeling proton exchange membrane fuel cells. Int. J. Hydrog. Energy 44(5), 3075–3087 (2019)

    Article  Google Scholar 

  86. Cheng, Z., Song, H., Wang, J., Zhang, H., Chang, T., Zhang, M.: Hybrid firefly algorithm with grou** attraction for constrained optimization problem. Knowl.-Based Syst. 220, 106937 (2021)

    Article  Google Scholar 

  87. Gu, L., Yang, R., Tho, C.-H., Makowskit, M., Faruquet, O., Li, Y.L.Y.: Optimisation and robustness for crashworthiness of side impact. Int. J. Veh. Des. 26(4), 348–360 (2001)

    Article  Google Scholar 

  88. Dhiman, G., Soni, M., Pandey, H.M., Slowik, A., Kaur, H.: A novel hybrid hypervolume indicator and reference vector adaptation strategies based evolutionary algorithm for many-objective optimization. Eng. Comput. 37(4), 3017–3035 (2021)

    Article  Google Scholar 

  89. Youn, B.D., Choi, K.K.: A new response surface methodology for reliability-based design optimization. Comput. Struct. 82(2–3), 241–256 (2004)

    Article  Google Scholar 

  90. Kim, T.-H., Cho, M., Shin, S.: Constrained mixed-variable design optimization based on particle swarm optimizer with a diversity classifier for cyclically neighboring subpopulations. Mathematics 8(11), 2016 (2020)

    Article  Google Scholar 

  91. Chhabra, A., Sahana, S.K., Sani, N.S., Mohammadzadeh, A., Omar, H.A.: Energy-aware bag-of-tasks scheduling in the cloud computing system using hybrid oppositional differential evolution-enabled whale optimization algorithm. Energies 15(13), 4571 (2022)

    Article  Google Scholar 

  92. Mohammadzadeh, A., Masdari, M.: Scientific workflow scheduling in multi-cloud computing using a hybrid multi-objective optimization algorithm. J. Ambient Intell. Humaniz. Compu. 14(4), 3509–3529 (2023)

    Article  Google Scholar 

  93. Mirjalili, S., Mirjalili, S.M., Saremi, S., Mirjalili, S.: Whale optimization algorithm: theory, literature review, and application in designing photonic crystal filters. In: Mirjalili, S., Song Dong, J., Lewis, A. (eds.) Nature-inspired optimizers theories, literature reviews and applications, pp. 219–238. Springer International Publishing, Cham (2020)

    Google Scholar 

Download references

Acknowledgements

The author would like to thank Mickey Charteris for providing his outstanding eel and grouper photos.

Funding

No specific grant from any funding agency in the public, commercial, or not-for-profit sectors was received for this research.

Author information

Authors and Affiliations

Authors

Contributions

The design and implementation of the research, the analysis of the results, and the writing of the manuscript were done by Ali Mohammadzadeh and Seyedali Mirjalili. All authors have read and approved the published version of the manuscript.

Corresponding author

Correspondence to Ali Mohammadzadeh.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadzadeh, A., Mirjalili, S. Eel and grouper optimizer: a nature-inspired optimization algorithm. Cluster Comput (2024). https://doi.org/10.1007/s10586-024-04545-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10586-024-04545-w

Keywords

Navigation