Log in

An effective deep learning architecture leveraging BIRCH clustering for resource usage prediction of heterogeneous machines in cloud data center

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Given the rise in demand for cloud computing in the modern era, the effectiveness of resource utilization is eminent to decrease energy footprint and achieve economic services. With the emerging machine learning and artificial intelligence techniques to model and predict, it is essential to explore a principal method that provides the best solution for the accurate provisioning of forthcoming requests in a cloud data center. Recent studies used machine learning and other advanced analytics to predict resource usage; however, these do not consider long-range dependencies in the time series, which is essential to capture for better prediction. Further, they show limitations in handling noise, missing values, and outliers in datasets. In this paper, we explored the problem by studying three techniques that enabled us to answer improvements in short-term forecasting of physical machines’ resource usage if the above factors are considered. We evaluated the predictions using Transformer and Informer deep learning models that cover the above aspects and compared them with the Long short-term memory (LSTM) model. We used a real-world Google cluster trace usage dataset and employed Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) algorithm to select heterogeneous machines. The evaluation of the three models depicts that the Transformer architecture that considers long-range dependencies in time series and shortcomings with datasets shows improvement in forecasting with 14.2% reduction in RMSE than LSTM. However, LSTM shows better results for some machines than the Transformer, which depicts the importance of input sequence order. The Informer model, which considers both dependencies and is a hybrid of LSTM and Transformer, outperformed both models with 21.7% from LSTM and 20.8% from Transformer reduction in RMSE. The results also depict Informer model consistently performs better than the other models across all subsets of the dataset. Our study proves that considering long-range dependencies and sequence ordering for resource usage time series improves the prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Algorithm 1
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The Google cluster trace usage dataset is publicly available at https://github.com/google/clusterdata/blob/master/ClusterData2019

References

  1. Abid, A., Manzoor, M.F., Farooq, M.S., Farooq, U., Hussain, M.: Challenges and issues of resource allocation techniques in cloud computing. KSII Trans. Internet Inf. Syst. (TIIS) 14(7), 2815–2839 (2020). https://doi.org/10.3837/tiis.2020.07.005

    Article  Google Scholar 

  2. Madni, S.H.H., Latiff, M.S.A., Coulibaly, Y., Abdulhamid, S.M.: Recent advancements in resource allocation techniques for cloud computing environment: a systematic review. Clust. Comput. 20, 2489–2533 (2017). https://doi.org/10.1007/s10586-016-0684-4

    Article  Google Scholar 

  3. Hameed, A., Khoshkbarforoushha, A., Ranjan, R., Jayaraman, P.P., Kolodziej, J., Balaji, P., Zeadally, S., Malluhi, Q.M., Tziritas, N., Vishnu, A., et al.: A survey and taxonomy on energy efficient resource allocation techniques for cloud computing systems. Computing 98, 751–774 (2016). https://doi.org/10.1007/s00607-014-0407-8

    Article  MathSciNet  Google Scholar 

  4. Ahuja, R., Mohanty, S.K.: A scalable attribute-based access control scheme with flexible delegation cum sharing of access privileges for cloud storage. IEEE Trans. Cloud Comput. 8(1), 32–44 (2017)

    Article  Google Scholar 

  5. Calheiros, R.N., Masoumi, E., Ranjan, R., Buyya, R.: Workload prediction using Arima model and its impact on cloud applications’ GOS. IEEE Trans. Cloud Comput. 3(4), 449–458 (2014). https://doi.org/10.1109/TCC.2014.2350475

    Article  Google Scholar 

  6. Gao, J., Wang, H., Shen, H.: Machine learning based workload prediction in cloud computing. In: 2020 29th International Conference on Computer Communications and Networks (ICCCN), pp. 1–9 (2020). https://doi.org/10.1109/ICCCN49398.2020.9209730 . IEEE

  7. Chen, J., Wang, Y.: A hybrid method for short-term host utilization prediction in cloud computing. J. Electr. Comput. Eng. (2019). https://doi.org/10.1155/2019/2782349

    Article  Google Scholar 

  8. Anupama, K., Shivakumar, B., Nagaraja, R.: Resource utilization prediction in cloud computing using hybrid model. Int. J. Adv. Comput. Sci. Appl. (2021). https://doi.org/10.14569/IJACSA.2021.0120447

    Article  Google Scholar 

  9. Dabral, P., Murry, M.Z.: Modelling and forecasting of rainfall time series using Sarima. Environ. Proc. 4(2), 399–419 (2017). https://doi.org/10.1007/s40710-017-0226-y

    Article  Google Scholar 

  10. Arora, P., Mehta, R., Ahuja, R.: An adaptive medical image registration using hybridization of teaching learning-based optimization with affine and speeded up robust features with projective transformation. Clust. Comput. (2023). https://doi.org/10.1007/s10586-023-03974-3

    Article  Google Scholar 

  11. Adamuthe, A.C., Gage, R.A., Thampi, G.T.: Forecasting cloud computing using double exponential smoothing methods. In: 2015 International Conference on Advanced Computing and Communication Systems, pp. 1–5 (2015). https://doi.org/10.1109/ICACCS.2015.7324108 . IEEE

  12. Ren, X., Lin, R., Zou, H.: A dynamic load balancing strategy for cloud computing platform based on exponential smoothing forecast. In: 2011 IEEE International Conference on Cloud Computing and Intelligence Systems, pp. 220–224 (2011). IEEE

  13. Huang, J., Li, C., Yu, J.: Resource prediction based on double exponential smoothing in cloud computing. In: 2012 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet), pp. 2056–2060 (2012). IEEE

  14. Rahman, Z.U., Hussain, O.K., Hussain, F.K.: Time series qos forecasting for management of cloud services. In: 2014 Ninth International Conference on Broadband and Wireless Computing, Communication and Applications, pp. 183–190 (2014). https://doi.org/10.1109/BWCCA.2014.144 . IEEE

  15. Chandy, A., et al.: Smart resource usage prediction using cloud computing for massive data processing systems. J. Inf. Technol. 1(02), 108–118 (2019). https://doi.org/10.36548/jitdw.2019.2.006

    Article  Google Scholar 

  16. Deepika, T., Prakash, P.: Power consumption prediction in cloud data center using machine learning. Int. J. Electr. Comput. Eng. (IJECE) 10(2), 1524–1532 (2020). https://doi.org/10.11591/ijece.v10i2.pp1524-1532

    Article  Google Scholar 

  17. Bankole, A.A., Ajila, S.A.: Predicting cloud resource provisioning using machine learning techniques. In: 2013 26th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1–4 (2013). IEEE

  18. Mehmood, T., Latif, S., Malik, S.: Prediction of cloud computing resource utilization. In: 2018 15th International Conference on Smart Cities: Improving Quality of Life Using ICT & IoT (HONET-ICT), pp. 38–42 (2018). IEEE

  19. Duggan, M., Mason, K., Duggan, J., Howley, E., Barrett, E.: Predicting host cpu utilization in cloud computing using recurrent neural networks. In: 2017 12th International Conference for Internet Technology and Secured Transactions (ICITST), pp. 67–72 (2017). IEEE

  20. Borkowski, M., Schulte, S., Hochreiner, C.: Predicting cloud resource utilization. In: Proceedings of the 9th International Conference on Utility and Cloud Computing, pp. 37–42 (2016). https://doi.org/10.1145/2996890.2996907

  21. Mason, K., Duggan, M., Barrett, E., Duggan, J., Howley, E.: Predicting host CPU utilization in the cloud using evolutionary neural networks. Futur. Gener. Comput. Syst. 86, 162–173 (2018). https://doi.org/10.1016/j.future.2018.03.040

    Article  Google Scholar 

  22. Lin, S.-Y., Chiang, C.-C., Li, J.-B., Hung, Z.-S., Chao, K.-M.: Dynamic fine-tuning stacked auto-encoder neural network for weather forecast. Futur. Gener. Comput. Syst. 89, 446–454 (2018). https://doi.org/10.1016/j.future.2018.06.052

    Article  Google Scholar 

  23. Shen, H., Hong, X.: Host load prediction with bi-directional long short-term memory in cloud computing. ar**v preprint ar**v:2007.15582 (2020). https://doi.org/10.48550/ar**v.2007.15582

  24. Garg, S., Ahuja, R., Singh, R., Perl, I.: Gmm-lstm: a component driven resource utilization prediction model leveraging lstm and gaussian mixture model. Clust. Comput. (2022). https://doi.org/10.1007/s10586-022-03747-4

    Article  Google Scholar 

  25. Ouhame, S., Hadi, Y., Ullah, A.: An efficient forecasting approach for resource utilization in cloud data center using CNN-lstm model. Neural Comput. Appl. 33, 10043–10055 (2021). https://doi.org/10.1007/s00521-021-05770-9

    Article  Google Scholar 

  26. Song, X., Liu, Y., Xue, L., Wang, J., Zhang, J., Wang, J., Jiang, L., Cheng, Z.: Time-series well performance prediction based on long short-term memory (lstm) neural network model. J. Petrol. Sci. Eng. 186, 106682 (2020). https://doi.org/10.1016/j.petrol.2019.106682

    Article  CAS  Google Scholar 

  27. Torres, J.F., Hadjout, D., Sebaa, A., Martínez-Álvarez, F., Troncoso, A.: Deep learning for time series forecasting: a survey. Big Data 9(1), 3–21 (2021). https://doi.org/10.1089/big.2020.0159

    Article  PubMed  Google Scholar 

  28. Parmezan, A.R.S., Souza, V.M., Batista, G.E.: Evaluation of statistical and machine learning models for time series prediction: Identifying the state-of-the-art and the best conditions for the use of each model. Inf. Sci. 484, 302–337 (2019). https://doi.org/10.1016/j.ins.2019.01.076

    Article  Google Scholar 

  29. Wu, N., Green, B., Ben, X., O’Banion, S.: Deep transformer models for time series forecasting: The influenza prevalence case. ar**v preprint ar**v:2001.08317 (2020)

  30. Yu, Y., Si, X., Hu, C., Zhang, J.: A review of recurrent neural networks: Lstm cells and network architectures. Neural Comput. 31(7), 1235–1270 (2019). https://doi.org/10.1162/neco_a_01199

    Article  MathSciNet  PubMed  Google Scholar 

  31. Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., **ong, H., Zhang, W.: Informer: Beyond efficient transformer for long sequence time-series forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 11106–11115 (2021). https://doi.org/10.1609/aaai.v35i12.17325

  32. Farahnakian, F., Ashraf, A., Pahikkala, T., Liljeberg, P., Plosila, J., Porres, I., Tenhunen, H.: Using ant colony system to consolidate VMS for green cloud computing. IEEE Trans. Serv. Comput. 8(2), 187–198 (2014)

    Article  Google Scholar 

  33. Farahnakian, F., Pahikkala, T., Liljeberg, P., Plosila, J., Hieu, N.T., Tenhunen, H.: Energy-aware VM consolidation in cloud data centers using utilization prediction model. IEEE Trans. Cloud Comput. 7(2), 524–536 (2016). https://doi.org/10.1109/TCC.2016.2617374

    Article  Google Scholar 

  34. Reiss, C., Wilkes, J., Hellerstein, J.L.: Google cluster-usage traces: format+ schema. Google Inc., White Paper 1, 1–14 (2011)

    Google Scholar 

  35. Zhang, T., Ramakrishnan, R., Livny, M.: Birch: a new data clustering algorithm and its applications. Data Min. Knowl. Disc. 1, 141–182 (1997)

    Article  Google Scholar 

  36. Xu, M., Song, C., Wu, H., Gill, S.S., Ye, K., Xu, C.: ESDNN: deep neural network based multivariate workload prediction in cloud computing environments. ACM Trans. Internet Technol. (TOIT) (2022). https://doi.org/10.1145/3524114

    Article  Google Scholar 

  37. Mrhari, A., Hadi, Y.: Workload prediction using VMD and TCN in cloud computing. J. Adv. Inf. Technol. (2022). https://doi.org/10.12720/jait.13.3.284-289

    Article  Google Scholar 

  38. Leka, H.L., Fengli, Z., Kenea, A.T., Tegene, A.T., Atandoh, P., Hundera, N.W.: A hybrid cnn-lstm model for virtual machine workload forecasting in cloud data center. In: 2021 18th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), pp. 474–478 (2021). https://doi.org/10.1109/ICCWAMTIP53232.2021.9674067 . IEEE

  39. Dang-Quang, N.-M., Yoo, M.: An efficient multivariate autoscaling framework using bi-lstm for cloud computing. Appl. Sci. 12(7), 3523 (2022). https://doi.org/10.3390/app12073523

    Article  CAS  Google Scholar 

  40. Karim, M.E., Maswood, M.M.S., Das, S., Alharbi, A.G.: Bhyprec: a novel bi-lstm based hybrid recurrent neural network model to predict the cpu workload of cloud virtual machine. IEEE Access 9, 131476–131495 (2021). https://doi.org/10.1109/ACCESS.2021.3113714

    Article  Google Scholar 

  41. Zhu, Y., Zhang, W., Chen, Y., Gao, H.: A novel approach to workload prediction using attention-based lstm encoder-decoder network in cloud environment. EURASIP J. Wirel. Commun. Netw. 2019(1), 1–18 (2019). https://doi.org/10.1186/s13638-019-1605-z

    Article  Google Scholar 

  42. Nguyen, H.M., Kalra, G., Kim, D.: Host load prediction in cloud computing using long short-term memory encoder-decoder. J. Supercomput. 75(11), 7592–7605 (2019). https://doi.org/10.1007/s11227-019-02967-7

    Article  Google Scholar 

  43. Patel, E., Kushwaha, D.S.: A hybrid cnn-lstm model for predicting server load in cloud computing. J. Supercomput. 78(8), 1–30 (2022). https://doi.org/10.1007/s11227-021-04234-0

    Article  Google Scholar 

  44. Nadendla, H.: Why are LSTMs struggling to matchup with Transformers? https://medium.com/analytics-vidhya/why-are-lstms-struggling-to-matchup-with-transformers-a1cc5b2557e3

  45. Yang, Z., Liu, L., Li, N., Tian, J.: Time series forecasting of motor bearing vibration based on informer. Sensors 22(15), 5858 (2022). https://doi.org/10.3390/s22155858

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  46. Zeng, A., Chen, M., Zhang, L., Xu, Q.: Are transformers effective for time series forecasting? ar**v preprint ar**v:2205.13504 (2022). https://doi.org/10.1609/aaai.v37i9.26317

  47. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Adv. Neural Inf. Proc. Syst.30, (2017)

  48. Tang, B., Matteson, D.S.: Probabilistic transformer for time series analysis. Adv. Neural. Inf. Process. Syst. 34, 23592–23608 (2021)

    Google Scholar 

  49. Wu, S., **ao, X., Ding, Q., Zhao, P., Wei, Y., Huang, J.: Adversarial sparse transformer for time series forecasting. Adv. Neural. Inf. Process. Syst. 33, 17105–17115 (2020)

    Google Scholar 

  50. Mohammadi Farsani, R., Pazouki, E.: A transformer self-attention model for time series forecasting. J. Electrical Comput. Eng. Innov. (JECEI) 9(1), 1–10 (2020). https://doi.org/10.22061/jecei.2020.7426.391

    Article  Google Scholar 

  51. Qian, Y., Tian, L., Zhai, B., Zhang, S., Wu, R.: Informer-WGAN: high missing rate time series imputation based on adversarial training and a self-attention mechanism. Algorithms 15(7), 252 (2022). https://doi.org/10.3390/a15070252

    Article  Google Scholar 

  52. Guo, L., Li, R., Jiang, B.: A data-driven long time-series electrical line trip fault prediction method using an improved stacked-informer network. Sensors 21(13), 4466 (2021). https://doi.org/10.3390/s21134466

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  53. Ryan, T.: LSTMs Explained: A Complete, Technically Accurate, Conceptual Guide with Keras. https://medium.com/analytics-vidhya/lstms-explained-a-complete-technically-accurate-conceptual-guide-with-keras-2a650327e8f2

  54. Pranav, P.: Recurrent Neural Networks, the Vanishing Gradient Problem, and Long Short-Term Memory. https://medium.com/@pranavp802/recurrent-neural-networks-the-vanishing-gradient-problem-and-lstms-3ac0ad8aff10

  55. Patro, S., Sahu, K.K.: Normalization: A preprocessing stage. ar**v preprint ar**v:1503.06462 (2015)

  56. Lachlan, R., Verhagen, L., Peters, S., Cate, C.T.: Are there species-universal categories in bird song phonology and syntax? a comparative study of chaffinches (fringilla coelebs), zebra finches (taenopygia guttata), and swamp sparrows (melospiza georgiana). J. Comp. Psychol. 124(1), 92 (2010). https://doi.org/10.1037/a0016996

    Article  CAS  PubMed  Google Scholar 

  57. Zhou, H.B., Gao, J.T.: Automatic method for determining cluster number based on silhouette coefficient. Adv. Mater. Res. 951, 227–230 (2014). https://doi.org/10.4028/www.scientific.net/AMR.951.227

    Article  Google Scholar 

Download references

Funding

No funding involved for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheetal Garg.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, S., Ahuja, R., Singh, R. et al. An effective deep learning architecture leveraging BIRCH clustering for resource usage prediction of heterogeneous machines in cloud data center. Cluster Comput (2024). https://doi.org/10.1007/s10586-023-04258-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10586-023-04258-6

Keywords

Navigation