Log in

Unstable transmission of rice chromosomes without functional centromeric repeats in asexual propagation

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

During sexual propagation of primary trisomic 8, chromosome 8 breaks in some rice plants, resulting in a telotrisomic (2n+·8S) line. In this study, we observed that the extra short arm of chromosome 8 (·8S) can easily be lost in the telotrisomic, and we determined by fluorescence in-situ hybridization (FISH) analysis that the centromeric region of the extra ·8S did not contain the rice centromeric satellite repeat (CentO) and centromere-specific retrotransposon (CRR); however, the extra ·8S contained part of the CentO and CRR sequences in the initially preserved telotrisomic line. We confirmed by real-time quantitative PCR (RQ-PCR) analysis that the original functional centromere of the extra ·8S was lost. Using both FISH and RQ-PCR, the breakage point of the extra ·8S was found within the BAC clone a0070J19 sequence containing the first part of the short arm near the centromere region of chromosome 8 but without any CentO or CRR sequences. However, part of the DNA sequence within the a0070J19 BAC clone played a role in the new functional centromere, contributing to the morphological variations by asexually propagated plants of rice telotrisomics in the field. We conclude that CENH3, a key element in the eukaryotic kinetochore, may not always bind properly with the new functional centromere, resulting in loss of the extra ·8S during mitosis and the chromosome numbers returning to diploid levels in subsequent generations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BAC:

bacterial artificial chromosome

CentO:

centromeric satellite repeat

CRR:

centromere-specific retrotransposon

DAPI:

4′,6-diamidinophenylindole

FISH:

fluorescence in-situ hybridization

FITC:

fluorescein isothiocyanate

PMC:

pollen mother cell

RQ-PCR:

real-time quantitative PCR

References

  • Amor DJ, Choo KH (2002) Neocentromeres: role in human disease, evolution, and centromere study. Am J Hum Genet 71:695–714

    Article  PubMed  Google Scholar 

  • Amor DJ, Kalitsis P, Sumer H, Choo KH (2004) Building the centromere: from foundation proteins to 3D organization. Trends Cell Biol 14:359–368

    Article  CAS  PubMed  Google Scholar 

  • Ananiev EV, Phillips RL, Rines HW (1998) Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci USA 95:13073–13078

    Article  CAS  PubMed  Google Scholar 

  • Blower MD, Karpen GH (2001) The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions. Nat Cell Biol 3:730–739

    Article  CAS  PubMed  Google Scholar 

  • Cheeseman IM, Drubin DG, Barnes G (2002) Simple centromere, complex kinetochore: linking spindle microtubules and centromeric DNA in budding yeast. J Cell Biol 157:199–203

    Article  CAS  PubMed  Google Scholar 

  • Cheng Z, Presting GG, Buell CR, Wing RA, Jiang J (2001a) High-resolution pachytene chromosome map** of bacterial artificial chromosomes anchored by genetic markers reveals the centromere location and the distribution of genetic recombination along chromosome 10 of rice. Genetics 157:1749–1757

    CAS  PubMed  Google Scholar 

  • Cheng Z, Yan H, Yu H et al (2001b) Development and applications of a complete set of rice telotrisomics. Genetics 157:361–368

    CAS  PubMed  Google Scholar 

  • Cheng Z, Dong F, Langdon T et al (2002) Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14:1691–1704

    Article  CAS  PubMed  Google Scholar 

  • Choo KH (2001) Domain organization at the centromere and neocentromere. Dev Cell 1:165–177

    Article  CAS  PubMed  Google Scholar 

  • Clarke L, Carbon J (1983) Genomic substitutions of centromeres in Saccharomyces cerevisiae. Nature 305:23–28

    Article  CAS  PubMed  Google Scholar 

  • Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102

    Article  CAS  PubMed  Google Scholar 

  • Hosouchi T, Kumekawa N, Tsuruoka H, Kotani H (2002) Physical map-based sizes of the centromeric regions of Arabidopsis thaliana chromosomes 1, 2, and 3. DNA Res 9:117–121

    Article  CAS  PubMed  Google Scholar 

  • Houben A, Schubert I (2003) DNA and proteins of plant centromeres. Curr Opin Plant Biol 6:554–560

    Article  CAS  PubMed  Google Scholar 

  • Howman EV, Fowler KJ, Newson AJ et al (2000) Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc Natl Acad Sci USA 97:1148–1153

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Gill BS, Wang GL, Ronald PC, Ward DC (1995) Metaphase and interphase fluorescence in situ hybridization map** of the rice genome with bacterial artificial chromosomes. Proc Natl Acad Sci USA 92:4487–4491

    Article  CAS  PubMed  Google Scholar 

  • Kamm A, Galasso I, Schmidt T, Heslop-Harrison JS (1995) Analysis of a repetitive DNA family from Arabidopsis arenosa and relationships between Arabidopsis species. Plant Mol Biol 27:853–862

    Article  CAS  PubMed  Google Scholar 

  • Kumekawa N, Hosouchi T, Tsuruoka H, Kotani H (2000) The size and sequence organization of the centromeric region of Arabidopsis thaliana chromosome 5. DNA Res 7:315–321

    Article  CAS  PubMed  Google Scholar 

  • Kumekawa N, Hosouchi T, Tsuruoka H, Kotani H (2001) The size and sequence organization of the centromeric region of Arabidopsis thaliana chromosome 4. DNA Res 8:285–290

    Article  CAS  PubMed  Google Scholar 

  • Kurata N, Omura T (1978) Karyotype analysis in rice I. A new method for identifying all chromosome pairs. Jpn J Genet 53:251–255.

    Google Scholar 

  • Larkin PJ, Scowcroft WP (1981) Somaclonal variation novel source of variability from cell culture for plant improvement. Theor Appl Genet 60:197–214

    Article  Google Scholar 

  • Lermontova I, Schubert V, Fuchs J, Klatte S, Macas J et al (2006) Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain. Plant Cell 18:2443–2451

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Jackson SA (2006) Retrotransposon accumulation and satellite amplification mediated by segmental duplication facilitate centromere expansion in rice. Genome Res 16:251–259

    Article  CAS  PubMed  Google Scholar 

  • Maggert KA, Karpen GH (2001) The activation of a neocentromere in Drosophila requires proximity to an endogenous centromere. Genetics 158:1615–1628

    CAS  PubMed  Google Scholar 

  • Malik HS, Henikoff S (2002) Conflict begets complexity: the evolution of centromeres. Curr Opin Genet Dev 12:711–718

    Article  CAS  PubMed  Google Scholar 

  • Nagaki K, Cheng Z, Ouyang S et al (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145

    Article  CAS  PubMed  Google Scholar 

  • Nagaki K, Kashihara K, Murata M (2009) A centromeric DNA sequence colocalized with a centromere-specific histone H3 in tobacco. Chromosoma 118:249–257

    Article  CAS  PubMed  Google Scholar 

  • Nasuda S, Hudakova S, Schubert I, Houben A, Endo TR (2005) Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci USA 102:9842–9847

    Article  CAS  PubMed  Google Scholar 

  • Ngezahayo F, Dong Y, Liu B (2007) Somaclonal variation at the nucleotide sequence level in rice (Oryza sativa L.) as revealed by RAPD and ISSR markers, and by pairwise sequence analysis. J Appl Genet 48:329–336

    PubMed  Google Scholar 

  • Palmer DK, O’Day K, Wener MH, Andrews BS, Margolis RL (1987) A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J Cell Biol 104:805–815

    Article  CAS  PubMed  Google Scholar 

  • Palmer DK, O’Day K, Trong HL, Charbonneau H, Margolis RL (1991) Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. Proc Natl Acad Sci USA 88:3734–3738

    Article  CAS  PubMed  Google Scholar 

  • Richards EJ, Ausubel FM (1988) Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53:127–136

    Article  CAS  PubMed  Google Scholar 

  • Schueler MG, Higgins AW, Rudd MK, Gustashaw K, Willard HF (2001) Genomic and genetic definition of a functional human centromere. Science 294:109–115

    Article  CAS  PubMed  Google Scholar 

  • Sullivan BA, Blower MD, Karpen GH (2001) Determining centromere identity: cyclical stories and forking paths. Nat Rev Genet 2:584–596

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Wahlstrom J, Karpen G (1997) Molecular structure of a functional Drosophila centromere. Cell 91:1007–1019

    Article  CAS  PubMed  Google Scholar 

  • Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S (2002) Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14:1053–1066

    Article  CAS  PubMed  Google Scholar 

  • Tanaka TU (2008) Bi-orienting chromosomes: acrobatics on the mitotic spindle. Chromosoma 117:521–533

    Article  PubMed  Google Scholar 

  • Thomas JW, Schueler MG, Summers TJ et al (2003) Pericentromeric duplications in the laboratory mouse. Genome Res 13:55–63

    Article  CAS  PubMed  Google Scholar 

  • Vafa O, Sullivan KF (1997) Chromatin containing CENP-A and alpha-satellite DNA is a major component of the inner kinetochore plate. Curr Biol 7:897–900

    Article  CAS  PubMed  Google Scholar 

  • Warburton PE (2004) Chromosomal dynamics of human neocentromere formation. Chromosome Res 12:617–626

    Article  CAS  PubMed  Google Scholar 

  • Warburton PE, Cooke CA, Bourassa S et al (1997) Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr Biol 7:901–904

    Article  CAS  PubMed  Google Scholar 

  • Wevrick R, Willard HF (1989) Long-range organization of tandem arrays of alpha satellite DNA at the centromeres of human chromosomes: high-frequency array-length polymorphism and meiotic stability. Proc Natl Acad Sci USA 86:9394–9398

    Article  CAS  PubMed  Google Scholar 

  • Wu HK (1967) Note on preparing of pachytene chromosomes by double mordant. Sci Agric 15:40–44

    Google Scholar 

  • Yan H, ** W, Nagaki K et al (2005) Transcription and histone modifications in the recombination-free region spanning a rice centromere. Plant Cell 17:3227–3238

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Tabei Y, Kamada H, Kayano T, Takaiwa F (1999) Detection of somaclonal variation in cultured rice cells using digoxigenin-based random amplified polymorphic DNA. Plant Cell Rep 18:520–526

    Article  CAS  Google Scholar 

  • Yu HX, Wang X, Gong ZY et al (2008) Generating of rice OsCENH3-GFP transgenic plants and their genetic applications. Chin Sci Bull 53:2981–2988

    Article  CAS  Google Scholar 

  • Zhang W, Yi C, Bao W et al (2005) The transcribed 165-bp CentO satellite is the major functional centromeric element in the wild rice species Oryza punctata. Plant Physiol 139:306–315

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Zhukuan Cheng for critical reading of the manuscript and Yong Zhou for RQ-PCR analysis. This work was supported by grants from the National Natural Science Foundation of China (30600345 and 30770131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghong Gu.

Additional information

Responsible Editor: Jiming Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, Z., Yu, H., Huang, J. et al. Unstable transmission of rice chromosomes without functional centromeric repeats in asexual propagation. Chromosome Res 17, 863–872 (2009). https://doi.org/10.1007/s10577-009-9073-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-009-9073-7

Keywords

Navigation