Log in

High Intensity Interval Training can Ameliorate Hypothalamic Appetite Regulation in Male Rats with Type 2 Diabetes: The Role of Leptin

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Disruption of leptin (LEP) signaling in the hypothalamus caused by type 2 diabetes (T2D) can impair appetite regulation. The aim of this study was to investigate whether the improvement in appetite regulation induced by high-intensity interval training (HIIT) in rats with T2D can be mediated by LEP signaling. In this study, 20 male Wister rats were randomly assigned to one of four groups: CO (non-type 2 diabetes control), T2D (type 2 diabetes), EX (non-type 2 diabetes exercise), and T2D + EX (type 2 diabetes + exercise).To induce T2D, a combination of a high-fat diet for 2 months and a single dose of streptozotocin (35 mg/kg) was administered. Rats in the EX and T2D + EX groups performed 4–10 intervals of treadmill running at 80–100% of their maximum velocity (Vmax). Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), serum levels of insulin (INS) and LEP (LEPS) as well as hypothalamic expression of LEP receptors (LEP-R), Janus kinase 2 (JAK-2), signal transducer and activator of transcription 3 (STAT-3), neuropeptide Y (NPY), agouti-related protein (AGRP), pro-opiomelanocortin cocaine (POMC), amphetamine-related transcript (CART), suppressor of cytokine signaling (SOCS3), forkhead box protein O1 (FOXO1) were assessed. ANOVA and Tukey post hoc tests were used to compare the results between the groups. The levels of LEPS and INS, as well as the levels of LEP-R, JAK-2, STAT-3, POMC, and CART in the hypothalamus were found to be higher in the T2D + EX group compared to the T2D group. On the other hand, the levels of HOMA-IR, NPY, AGRP, SOCS3, and FOXO1 were lower in the T2D + EX group compared to the T2D group (P < 0.0001). The findings of this study suggest that HIIT may improve appetite regulation in rats with T2D, and LEP signaling may play a crucial role in this improvement.

Graphical Abstract

Graphical abstract (leptin signaling in the hypothalamus), Leptin (LEP), Leptin receptor (LEP-R), Janus kinase 2 (JAK2), Signal transducer and activator of transcription 3 (STAT3), expressing Neuropeptide Y (NPY), Agouti-related protein (AGRP), anorexigenic neurons (expressing pro-opiomelanocortin cocaine (POMC), Amphetamine-related transcript (CART), suppressor of cytokine signaling (SOCS3), forkhead box protein O1 (FOXO1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data that support the findings of this study are available at Kerman University of Medical Scinces.

Abbreviations

AGRP:

Agouti-related protein

CART:

Amphetamine-related transcript

CON:

Non-type 2 diabetes control

EX:

Non-type 2 diabetes exercise

FOXO1:

Forkhead box protein O1

HIIT:

High-intensity interval training

INS-S:

Serum insulin levels

INS-H:

Hypothalamus insulin

JAK-2:

Janus kinase 2

LEP:

Leptin

NPY:

Neuropeptide Y

POMC:

Pro-opiomelanocortin cocaine

SOCS3:

Suppressor of cytokine signaling

STAT-3:

Signal transducer and activator of transcription 3

T2D:

Type 2 diabetes

T2D + EX:

Type 2 diabetes + exercise

Vmax :

Maximum velocity

References

  • Afrasyabi S, Marandi SM, Kargarfard M (2019) The effects of high intensity interval training on appetite management in individuals with type 2 diabetes: influenced by participants weight. J Diabetes Metabolic Disorders 18:107–117

    CAS  Google Scholar 

  • Bahrami A, Saremi A (2011) Effect of caloric restriction with or without aerobic training on body composition, blood lipid profile, insulin resistance, and inflammatory marker in middle-age obese/overweight men. Arak Med Univ J 14(3):11–19

    CAS  Google Scholar 

  • Bejeshk MA, Rajizadeh MA, Najafipour H, Dehghan P (2022) High-intensity interval training ameliorate diabetes-induced disturbances in Alzheimer’s-related factors in the hippocampus through adiponectin signaling.

  • Basereh A, Ebrahim K, Hovanloo F, Dehghan P, Khoramipour K (2017) Effect of blood flow restriction deal during isometric exercise on growth hormone and testosterone active males. Sports Physiol 9(33):51–68

    Google Scholar 

  • Cernea S, Roiban AL, Both E, Huţanu A (2018) Serum leptin and leptin resistance correlations with NAFLD in patients with type 2 diabetes. Diab/Metab Res Rev 34(8):e3050

    Google Scholar 

  • D’souza AM, Johnson JD, Clee SM, Kieffer TJ (2016) Suppressing hyperinsulinemia prevents obesity but causes rapid onset of diabetes in leptin-deficient Lepob/ob mice. Mol Metabolism 5(11):1103–1112

    Google Scholar 

  • Ebrahimnezhad N, Nayebifar S, Soltani Z, Khoramipour K (2023) High-intensity interval training reduced oxidative stress and apoptosis in the hippocampus of male rats with type 2 diabetes: the role of the PGC1α-Keap1-Nrf2 signaling pathway. Iran J Basic Med Sci. https://doi.org/10.22038/ijbms.2023.70833.15387

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Haschimi K, Pierroz DD, Hileman SM, Bjørbæk C, Flier JS (2000) Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J Clin Investig 105(12):1827–1832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eliza J, Daisy P, Ignacimuthu S, Duraipandiyan V (2009) Antidiabetic and antilipidemic effect of eremanthin from Costus speciosus (Koen.) Sm., in STZ-induced diabetic rats. Chemico-Biol Interact 182(1):67–72

    CAS  Google Scholar 

  • Fischer S, Hanefeld M, Haffner S, Fusch C, Schwanebeck U, Köhler C et al (2002) Insulin-resistant patients with type 2 diabetes mellitus have higher serum leptin levels independently of body fat mass. Acta Diabetol 39(3):105–110

    CAS  PubMed  Google Scholar 

  • Frankenberg ADV, Reis AF, Gerchman F (2017) Relationships between adiponectin levels, the metabolic syndrome, and type 2 diabetes: a literature review. Archives Endocrinol Metab 61:614–622

    Google Scholar 

  • Gurzov EN, Stanley WJ, Pappas EG, Thomas HE, Gough DJ (2016) The JAK/STAT pathway in obesity and diabetes. FEBS J 283(16):3002–3015

    CAS  PubMed  Google Scholar 

  • He Z, Gao Y, Alhadeff AL, Castorena CM, Huang Y, Lieu L et al (2018a) Cellular and synaptic reorganization of arcuate NPY/AgRP and POMC neurons after exercise. Mol Metabolism 18:107–119

    CAS  Google Scholar 

  • He Z, Tian Y, Valenzuela PL, Huang C, Zhao J, Hong P et al (2018b) Myokine response to high-intensity interval vs. resistance exercise: an individual approach. Front Physiol 9:1735

    PubMed  PubMed Central  Google Scholar 

  • Ibeas K, Herrero L, Mera P, Serra D (2021) Hypothalamus-skeletal muscle crosstalk during exercise and its role in metabolism modulation. Biochem Pharmacol 190:114640

    CAS  PubMed  Google Scholar 

  • Kadoglou NP, Iliadis F, Angelopoulou N, Perrea D, Ampatzidis G, Liapis CD et al (2007) The anti-inflammatory effects of exercise training in patients with type 2 diabetes mellitus. Eur J Prev Cardiol 14(6):837–843

    Google Scholar 

  • Kang S, Kim KB, Shin KO (2013) Exercise training improve leptin sensitivity in peripheral tissue of obese rats. Biochem Biophys Res Commun 435(3):454–459

    CAS  PubMed  Google Scholar 

  • Khoramipour K, Bejeshk MA, Rajizadeh MA, Najafipour H, Dehghan P, Farahmand F (2023) High-intensity interval training ameliorates molecular changes in the Hippocampus of male rats with the diabetic brain: the role of adiponectin. Mol Neurobiol 60(6):3486–3495

    CAS  PubMed  Google Scholar 

  • Khoramipour K, Hekmatikar AA, Sotvan H (2020) An overview of Fatmax and MFO in exercise. Razi J Med Sci 27:49–59

    Google Scholar 

  • Lee MR, Kim JE, Choi JY, Park JJ, Kim HR, Song BR et al (2019) Anti-obesity effect in high–fat–diet–induced obese C57BL/6 mice: study of a novel extract from mulberry (Morus alba) leaves fermented with Cordyceps militaris. Exp Ther Med 17(3):2185–2193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lima MM, Pareja JC, Alegre SM, Geloneze SR, Kahn SE, Astiarraga BD et al (2013) Visceral fat resection in humans: effect on insulin sensitivity, beta-cell function, adipokines, and inflammatory markers. Obesity 21(3):E182–E9

    CAS  PubMed  Google Scholar 

  • Liu W, Liu J, **a J, Xue X, Wang H, Qi Z et al (2017) Leptin receptor knockout-induced depression-likebehaviors and attenuated antidepressant effects of exercise are associated withSTAT3/SOCS3 signaling. Brain Behav Immun 61:297–305

    CAS  PubMed  Google Scholar 

  • Liu J, Yang X, Yu S, Zheng R (2018) The leptin signaling. In: Wu Q, Zheng R (eds) Neural regulation of metabolism. Springer, Berlin, pp 123–144

    Google Scholar 

  • Lyu X, Yan K, Wang X, Xu H, Guo X, Zhu H et al (2022) A novel anti-obesity mechanism for liraglutide by improving adipose tissue leptin resistance in high-fat diet-fed obese mice. Endocr J. https://doi.org/10.1507/endocrj.EJ21-0802

    Article  PubMed  Google Scholar 

  • MAGALHÃES DA, Kume WT, Correia FS, Queiroz TS, ALLEBRANDT EW, SANTOS MP et al (2019) High-fat diet and streptozotocin in the induction of type 2 diabetes mellitus: a new proposal. Anais da Academia Brasileira de Ciências. https://doi.org/10.1590/0001-3765201920180314

    Article  PubMed  Google Scholar 

  • Moonishaa TM, Nanda SK, Shamraj M, Sivaa R, Sivakumar P, Ravichandran K (2017) Evaluation of leptin as a marker of insulin resistance in type 2 diabetes mellitus. Int J Appl Basic Med Res 7(3):176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morioka T, Emoto M, Yamazaki Y, Urata H, Imamura S, Numaguchi R et al (2013) Plasma soluble leptin receptor levels are associated with beta cell function in patients with type 2 diabetes. Diabetologia 56:S1–S566

    Google Scholar 

  • de Oliveira E, Moura EG, Santos-Silva AP, Pinheiro CR, Lima NS, Nogueira-Neto JF et al (2010) Neonatal nicotine exposure causes insulin and leptin resistance and inhibits hypothalamic leptin signaling in adult rat offspring. J Endocrinol 206(1):55–63

    PubMed  Google Scholar 

  • Oquendo MB, Lorza-Gil E, Juarez-Lopez D, Wagner R, Birkenfeld AL, Ullrich S et al (2022) Effects of adrenergic-stimulated lipolysis and cytokine production on in vitro mouse adipose tissue–islet interactions. Sci Rep 12(1):15831

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orumiyehei A, Khoramipour K, Rezaei MH, Madadizadeh E, Meymandi MS, Mohammadi F et al (2022) High-intensity interval training-induced hippocampal molecular changes associated with improvement in anxiety-like behavior but not cognitive function in rats with type 2 diabetes. Brain Sci 12(10):1280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park HK, Ahima RS (2014) Leptin signaling. F1000Prime Rep 6:73

    PubMed  PubMed Central  Google Scholar 

  • Park S, Jang JS, Jun DW, Hong SM (2005) Exercise enhances insulin and leptin signaling in the cerebral cortex and hypothalamus during dexamethasone-induced stress in diabetic rats. Neuroendocrinology 82(5–6):282–293

    CAS  PubMed  Google Scholar 

  • Pauli L, CT DS, AS DS, Cintra D, Marinho R, LP DM et al (2015) Acute Exercise decreases Tribbles Homolog 3 protein levels in the hypothalamus of obese rats. Med Sci Sports Exerc 47(8):1613–1623

    PubMed  Google Scholar 

  • Peng J, Yin L, Wang X (2021) Central and peripheral leptin resistance in obesity and improvements of exercise. Horm Behav 133:105006

    CAS  PubMed  Google Scholar 

  • Platt TL, Beckett TL, Kohler K, Niedowicz DM, Murphy MP (2016) Obesity, diabetes, and leptin resistance promote tau pathology in a mouse model of disease. Neuroscience 315:162–174

    CAS  PubMed  Google Scholar 

  • Rahmaty S, Dehghan P, Khoramipour K, Saboory M (2015) The effect of listening to brain waves’ relaxing and exciting music during intense endurance training on blood cortisol levels of adult men. Am J Sports Med 3(4):77–81

    Google Scholar 

  • Rajabi A, Khajehlandi M, Siahkuhian M, Akbarnejad A, Khoramipour K, Suzuki K (2022) Effect of 8 weeks aerobic training and saffron supplementation on inflammation and metabolism in middle-aged obese women with type 2 diabetes mellitus. Sports 10(11):167

    PubMed  PubMed Central  Google Scholar 

  • Rajizadeh MA, Moslemizadeh A, Hosseini MS, Rafiei F, Soltani Z, Khoramipour K (2023) Adiponectin receptor 1 could explain the sex differences in molecular basis of cognitive improvements induced by exercise training in type 2 diabetic rats. Sci Rep 13(1):16267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rezaei MH, Madadizadeh E, Aminaei M, Abbaspoor M, Schierbauer J, Moser O et al (2023) Leptin signaling could mediate hippocampal decumulation of beta-amyloid and tau induced by high-intensity interval training in rats with type 2 diabetes. Cell Mol Neurobiol. https://doi.org/10.1007/s10571-023-01357-1

    Article  PubMed  Google Scholar 

  • Ropelle ER, Flores MB, Cintra DE, Rocha GZ, Pauli JR, Morari J et al (2010) IL-6 and IL-10 anti-inflammatory activity links exercise to hypothalamic insulin and leptin sensitivity through IKKβ and ER stress inhibition. PLoS Biol 8(8):e1000465

    PubMed  PubMed Central  Google Scholar 

  • Ruegsegger GN, Booth FW (2017) Running from disease: molecular mechanisms associating dopamine and leptin signaling in the brain with physical inactivity, obesity, and type 2 diabetes. Front Endocrinol 8:109

    Google Scholar 

  • Sahu A (2003) Leptin signaling in the hypothalamus: emphasis on energy homeostasis and leptin resistance. Front Neuroendocr 24(4):225–253

    CAS  Google Scholar 

  • Sasaki T, Kitamura T (2010) Roles of FoxO1 and Sirt1 in the central regulation of food intake. Endocr J 57(11):939–946

    CAS  PubMed  Google Scholar 

  • Shimizu Y, Son C, Aotani D, Nomura H, Hikida T, Hosoda K et al (2017) Role of leptin in conditioned place preference to high-fat diet in leptin-deficient ob/ob mice. Neurosci Lett 640:60–63

    CAS  PubMed  Google Scholar 

  • Sims-Robinson C, Kim B, Rosko A, Feldman EL (2010) How does diabetes accelerate Alzheimer disease pathology? Nat Reviews Neurol 6(10):551–559

    CAS  Google Scholar 

  • Speisman RB, Kumar A, Rani A, Foster TC, Ormerod BK (2013) Daily exercise improves memory, stimulates hippocampal neurogenesis and modulates immune and neuroimmune cytokines in aging rats. Brain Behav Immun 28:25–43

    CAS  PubMed  Google Scholar 

  • Villano I, La Marra M, Di Maio G, Monda V, Chieffi S, Guatteo E et al (2022) Physiological role of orexinergic system for health. Int J Environ Res Public Health 19(14):8353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wauters M, Considine R, Yudkin J, Peiffer F, De Leeuw I, Van Gaal L (2003) Leptin levels in type 2 diabetes: associations with measures of insulin resistance and insulin secretion. Horm Metab Res 35(02):92–96

    CAS  PubMed  Google Scholar 

  • Yang G, Lim C-Y, Li C, **ao X, Radda GK, Li C et al (2009) FoxO1 inhibits leptin regulation of pro-opiomelanocortin promoter activity by blocking STAT3 interaction with specificity protein 1. J Biol Chem 284(6):3719–3727

    CAS  PubMed  Google Scholar 

  • Zhang N, Bi S (2018) Effects of physical exercise on food intake and body weight: role of dorsomedial hypothalamic signaling. Physiol Behav 192:59–63

    CAS  PubMed  Google Scholar 

  • Zhao J, Tian Y, Xu J, Liu D, Wang X, Zhao B (2011) Endurance exercise is a leptin signaling mimetic in hypothalamus of Wistar rats. Lipids Health Dis 10(1):1–7

    Google Scholar 

Download references

Acknowledgements

We would like to thanks Mohammad Amin Rajizadeh and Abbas Bejeshk for their help and support.

Funding

This research was supported by neuroscience research center, Kerman University of Medical Scinces (Project No: 400000089).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, KK; methodology, KK; software, MH; validation, MH; formal analysis, ZS; investigation, MH; resources, EM.; data curation, ZS ; writing—original draft preparation, EM; writing—review and editing, KK; visualization, ZS; supervision, KK; project administration, KK; funding acquisition, KK.

Corresponding author

Correspondence to Kayvan Khoramipour.

Ethics declarations

Conflict of interest

No conflicts of interest, financial or otherwise, are declared by the authors.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoramipour, K., Rezaei, M.H., Madadizadeh, E. et al. High Intensity Interval Training can Ameliorate Hypothalamic Appetite Regulation in Male Rats with Type 2 Diabetes: The Role of Leptin. Cell Mol Neurobiol 43, 4295–4307 (2023). https://doi.org/10.1007/s10571-023-01421-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-023-01421-w

Keywords

Navigation