Log in

Novel bacterial cellulose-TiO2 stabilized Pickering emulsion for photocatalytic degradation

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Photocatalytic degradation of organic pollutants is an effective, energy-saving and renewable technique. In this study, functional oil/water (O/W) Pickering emulsions with excellent photocatalytic activity were prepared by the adsorption of nano-titanium oxide (TiO2) into bacterial cellulose (BC). The results indicate that the novel hybrid structure enhanced the interfacial diffusion rate of BC-TiO2 and further improved the mechanical strength of the obtained interfacial layer. Stable medium internal phase emulsions (MIPEs) and high internal phase emulsions (HIPEs) were also obtained by using low-loading hybrid particles. The investigation of morphology and rheological properties indicated that the shear-thinning and solid-like behaviors of the obtained emulsion systems. The photocatalytic degradation of rhodamine B was much faster in the emulsion system than p-TiO2 suspension, which was stabilized by BC-TiO2 (45 min, 90%) with respect to the case of TiO2 (90 min, 90%) and an aqueous system containing TiO2 (120 min, 53%). Therefore, this paper gives new insights to the application of BC as an efficient scaffold for loading TiO2 coupling at the oil–water interface, thus paving the way for the development of sustainable catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (31972038), the Applied Basic Frontiers Program of Wuhan City (2019020701011474) and the Agricultural Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2013-OCRI).

Funding

Funding was provided by the National Natural Science Foundation of China (31972038), the Applied Basic Frontiers Program of Wuhan City (2019020701011474) and the Agricultural Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2013-OCRI).

Author information

Authors and Affiliations

Authors

Contributions

QL Conducted experiments and analytical characterization methodology, Investigation, Writing-original draft. YZ Follow-up experiments; Data curation; Formal analysis; Writing-review & editing. SL Visualization. ZL Visualization, Writing-review & editing. FH Project administration. MZ Conceptualization, Supervision, Project administration, Funding acquisition.

Corresponding author

Correspondence to Mingming Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1392 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Zhang, Y., Liu, Z. et al. Novel bacterial cellulose-TiO2 stabilized Pickering emulsion for photocatalytic degradation. Cellulose 29, 5223–5234 (2022). https://doi.org/10.1007/s10570-022-04604-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-022-04604-8

Keywords

Navigation