Log in

High-efficacy and long term antibacterial cellulose material: anchored guanidine polymer via double “click chemistry”

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Herein, we introduce antimicrobial activity to cellulose fibers (CFs) by presenting a double “click chemistry” strategy. CFs chemically modified with azide functions are designed as a versatile ligation platform for Cu(I)-catalyzed azide-alkyne click reaction. Glycidyl propargyl ether (GPE) with epoxy groups was grafted onto azidated cellulose fibers (CFs-N3) via azide-alkyne click reaction yielding epoxy cellulose fibers (CFs-Epoxy). Then poly(hexamethylene guanidine) (PHMG) can be chemically grafted onto the CFs to form antibacterial materials (CFs-PHMG) through amino groups initiated epoxy ring-opening click reaction. The results revealed that PHMG was anchored successfully onto CFs via chemical bond formation without significant damage to the morphology of CFs and mechanical performance of cellulose paper. In the antibacterial tests, the functionalized CFs show superior antibacterial activity against E. coli and S. aureus. Importantly, CFs-PHMG paper sheet presented long-term antibacterial effectiveness, remaining ~ 99% antibacterial activity after two months storage in the air environment. This antibacterial CFs-PHMG has good potential application in bioactive paper packaging and medical paper products.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alonso D, Gimeno M, Olayo R, Vázquez-Torres H, Sepúlveda-Sánchez JD, Shirai K (2009) Cross-linking chitosan into UV-irradiated cellulose fibers for the preparation of antimicrobial-finished textiles. Carbohydr Polym 77(3):536–543

    CAS  Google Scholar 

  • Bu G, Wang C, Fu S, Tian A (2012) Water-soluble cationic chitosan derivative to improve pigment-based inkjet printing and antibacterial properties for cellulose substrates. J Appl Polym Sci 125(3):1674–1680

    CAS  Google Scholar 

  • Cai Q, Yang S, Zhang C, Li Z, Li X, Shen Z, Zhu W (2018) Facile and versatile modification of cotton fibers for persistent antibacterial activity and enhanced hygroscopicity. ACS Appl Mater Interfaces 10(44):38506–38516

    CAS  PubMed  Google Scholar 

  • Cao W, Wei D, Jiang Y, Ye S, Zheng A, Guan Y (2018) Surface chemical bonding with poly(hexamethylene guanidine) for non-leaching antimicrobial poly(ethylene terephthalate). J Mater Sci 54(3):2699–2711

    Google Scholar 

  • Cao Y, Gu J, Wang S, Zhang Z, Yu H, Li J, Chen S (2020) Guanidine-functionalized cotton fabrics for achieving permanent antibacterial activity without compromising their physicochemical properties and cytocompatibility. Cellulose 27(10):6027–6036

    CAS  Google Scholar 

  • Carpenter BL, Scholle F, Sadeghifar H, Francis AJ, Boltersdorf J, Weare WW, Argyropoulos DS, Maggard PA, Ghiladi RA (2015) Synthesis, characterization, and antimicrobial efficacy of photomicrobicidal cellulose paper. Biomacromol 16(8):2482–2492

    CAS  Google Scholar 

  • Chaker A, Boufi S (2015) Cationic nanofibrillar cellulose with high antibacterial properties. Carbohydr Polym 131:224–232

    CAS  PubMed  Google Scholar 

  • Chauhan I, Mohanty P (2014) In situ decoration of TiO2 nanoparticles on the surface of cellulose fibers and study of their photocatalytic and antibacterial activities. Cellulose 22(1):507–519

    Google Scholar 

  • Chen S, Yuan L, Li Q, Li J, Zhu X, Jiang Y, Huang P (2016) Durable antibacterial and nonfouling cotton textiles with enhanced comfort via zwitterionic sulfopropylbetaine coating. Small 12(26):3516–3521

    CAS  PubMed  Google Scholar 

  • Choi H, Kim KJ, Lee DG (2017) Antifungal activity of the cationic antimicrobial polymer-polyhexamethylene guanidine hydrochloride and its mode of action. Fungal Biol 121(1):53–60

    CAS  PubMed  Google Scholar 

  • Ding C, Sun L, **ao G, Qian X, An X (2017) Green and combinational method towards clickable alkynylated cellulose fibers (ACFs). Cellulose 24(8):3219–3229

    CAS  Google Scholar 

  • Dong C, Ye Y, Qian L, Zhao G, He B, **ao H (2014) Antibacterial modification of cellulose fibers by grafting β-cyclodextrin and inclusion with ciprofloxacin. Cellulose 21(3):1921–1932

    CAS  Google Scholar 

  • Du WX, Avena-Bustillos RJ, Woods R, Breksa AP, McHugh TH, Friedman M, Levin CE, Mandrell R (2012) Sensory evaluation of baked chicken wrapped with antimicrobial apple and tomato edible films formulated with cinnamaldehyde and carvacrol. J Agr Food Chem 60(32):7799–7804

    CAS  Google Scholar 

  • Elchinger P-H, Awada H, Zerrouki C, Montplaisir D, Zerrouki R (2014) Kraft pulp-starch covalent linking: a promising route to a newmaterial. Ind Eng Chem Res 53(18):7604–7610

    CAS  Google Scholar 

  • Fallah Z, Nasr Isfahani H, Tajbakhsh M, Tashakkorian H, Amouei A (2017) TiO2-grafted cellulose viaclickreaction: an efficient heavy metal ions bioadsorbent from aqueous solutions. Cellulose 25(1):639–660

    Google Scholar 

  • Feese E, Sadeghifar H, Gracz HS, Argyropoulos DS, Ghiladi RA (2011) Photobactericidal porphyrin-cellulose nanocrystals: synthesis, characterization, and antimicrobial properties. Biomacromol 12(10):3528–3539

    CAS  Google Scholar 

  • Filpponen I, Kontturi E, Nummelin S, Rosilo H, Kolehmainen E, Ikkala O (2012) Generic method for modular surface modification of cellulosic materials in aqueous medium by sequential “click” reaction and adsorption. Biomacromol 13(3):736–742

    CAS  Google Scholar 

  • Fox SC, Li B, Xu D, Edgar KJ (2011) Regioselective esterification and etherification of cellulose: a review. Biomacromol 12(6):1956–1972

    CAS  Google Scholar 

  • Gu J, Yuan L, Zhang Z, Yang X, Luo J, Gui Z, Chen S (2018) Non-leaching bactericidal cotton fabrics with well-preserved physical properties, no skin irritation and no toxicity. Cellulose 25(9):5415–5426

    CAS  Google Scholar 

  • Guan Y, **ao H, Sullivan H, Zheng A (2007) Antimicrobial-modified sulfite pulps prepared by in situ copolymerization. CarbohydrPolym 69(4):688–696

    CAS  Google Scholar 

  • Guan Y, Qian L, **ao H, Zheng A (2008) Preparation of novel antimicrobial-modified starch and its adsorption on cellulose fibers: part I. Optimization of synthetic conditions and antimicrobial activities. Cellulose 15(4):609–618

    CAS  Google Scholar 

  • Hou A, Zhou M, Wang X (2009) Preparation and characterization of durable antibacterial cellulose biomaterials modified with triazine derivatives. Carbohydr Polym 75(2):328–332

    CAS  Google Scholar 

  • Huang X, Shen J, Qian X (2013) Filler modification for papermaking with starch/oleic acid complexes with the aid of calcium ions. Carbohydr Polym 98(1):931–935

    CAS  PubMed  Google Scholar 

  • Illergård J, Römling U, Wågberg L, Ek M (2012) Biointeractive antibacterial fibres using polyelectrolyte multilayer modification. Cellulose 19(5):1731–1741

    Google Scholar 

  • Islam MS, Akter N, Rahman MM, Shi C, Islam MT, Zeng H, Azam MS (2018) Mussel-inspired immobilization of silver nanoparticles toward antimicrobial cellulose paper. ACS Sustain Chem Eng 6(7):9178–9188

    CAS  Google Scholar 

  • Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Edit 40(11):2004–2021

    CAS  Google Scholar 

  • Lavoine N, Desloges I, Sillard C, Bras J (2014) Controlled release and long-term antibacterial activity of chlorhexidine digluconate through the nanoporous network of microfibrillated cellulose. Cellulose 21(6):4429–4442

    CAS  Google Scholar 

  • Li H, Peng L (2015) Antimicrobial and antioxidant surface modification of cellulose fibers using layer-by-layer deposition of chitosan and lignosulfonates. Carbohydr Polym 124:35–42

    CAS  PubMed  Google Scholar 

  • Li Z, Chen J, Cao W, Wei D, Zheng A, Guan Y (2018) Permanent antimicrobial cotton fabrics obtained by surface treatment with modified guanidine. Carbohydr Polym 180:192–199

    CAS  PubMed  Google Scholar 

  • Lin L, Dai Y, Cui H (2017) Antibacterial poly(ethylene oxide) electrospun nanofibers containing cinnamon essential oil/beta-cyclodextrin proteoliposomes. Carbohydr Polym 178:131–140

    CAS  PubMed  Google Scholar 

  • Liu Z, Xu M, Wang Q, Li B (2017) A novel durable flame retardant cotton fabric produced by surface grafting of phosphorus- and nitrogen-containing compounds. Cellulose 24(9):4069–4081

    CAS  Google Scholar 

  • Mahadeva SK, Walus K, Stoeber B (2014) Piezoelectric paper fabricated via nanostructured barium titanate functionalization of wood cellulose fibers. ACS Appl Mater Interfaces 6(10):7547–7553

    CAS  PubMed  Google Scholar 

  • Mangiante G, Alcouffe P, Burdin B, Gaborieau M, Zeno E, Petit-Conil M, Bernard J, Charlot A, Fleury E (2013) Green nondegrading approach to alkyne-functionalized cellulose fibers and biohybrids thereof: synthesis and map** of the derivatization. Biomacromol 14:254–263

    CAS  Google Scholar 

  • Mao H, Dong Y, Qian X, An X (2017) Enhancement of bonding strength of polypyrrole/cellulose fiber (PPy/CF) hybrid through lignosulfonate do**. Cellulose 24(5):2255–2263

    CAS  Google Scholar 

  • Maver T, Maver U, Mostegel F, Griesser T, Spirk S, Smrke DM, Stana-Kleinschek K (2014) Cellulose based thin films as a platform for drug release studies to mimick wound dressing materials. Cellulose 22(1):749–761

    Google Scholar 

  • Meng X, Edgar KJ (2016) “Click” reactions in polysaccharide modification. Prog Polym Sci 53:52–85

    CAS  Google Scholar 

  • Neal AL (2008) What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology 17(5):362–371

    CAS  PubMed  Google Scholar 

  • Nongbe MC, Bretel G, Ekou L, Ekou T, Robitzer M, Le Grognec E, Felpin F-X (2018) Cellulose paper azide as a molecular platform forversatile click ligations: application to the preparation of hydrophobic paper surface. Cellulose 25(2):1395–1411

    CAS  Google Scholar 

  • Park JH, Oh KW, Choi HM (2013) Preparation and characterization of cotton fabrics with antibacterial properties treated by crosslinkable benzophenone derivative in choline chloride-based deep eutectic solvents. Cellulose 20(4):2101–2114

    CAS  Google Scholar 

  • Parsamanesh M, Dadkhah Tehrani A (2016) Synthesize of new fluorescent polymeric nanoparticle using modified cellulose nanowhisker through click reaction. Carbohydr Polym 136:1323–1331

    CAS  PubMed  Google Scholar 

  • Peila R, Vineis C, Varesano A, Ferri A (2013) Different methods for β-cyclodextrin/triclosan complexation as antibacterial treatment of cellulose substrates. Cellulose 20(4):2115–2123

    CAS  Google Scholar 

  • Rahman NSA, Ahmad NA, Yhaya MF, Azahari B, Ismail WR (2016) Crosslinking of fibers via azide–alkyne click chemistry: synthesis and characterization. J Appl Polym Sci 133(25):1–8

    Google Scholar 

  • Rong L, Liu H, Wang B, Mao Z, Xu H, Zhang L, Zhong Y, Feng X, Sui X (2019) Durable antibacterial and hydrophobic cotton fabrics utilizing enamine bonds. Carbohydr Polym 211:173–180

    CAS  PubMed  Google Scholar 

  • Roy D, Knapp JS, Guthrie JT, Perrier S (2008) Antibacterial cellulose fiber via raft surface graft polymerization. Biomacromol 9(1):91–99

    CAS  Google Scholar 

  • Sadeghifar H, Venditti R, Jur J, Gorga RE, Pawlak JJ (2016) Cellulose-lignin biodegradable and flexible UV protection film. ACS Sustain Chem Eng 5(1):625–631

    Google Scholar 

  • Saif MJ, Zia KM, Rehman FU, Ahmad MN, Kiran S, Gulzar T (2014) An eco-friendly, permanent, and non-leaching antimicrobial coating on cotton fabrics. J Text I 106(9):907–911

    Google Scholar 

  • Seabra AB, Bernardes JS, Favaro WJ, Paula AJ, Duran N (2018) Cellulose nanocrystals as carriers in medicine and their toxicities: a review. Carbohydr Polym 181:514–527

    CAS  PubMed  Google Scholar 

  • Sehmi SK, Noimark S, Weiner J, Allan E, MacRobert AJ, Parkin IP (2015) Potent antibacterial activity of copper embedded into silicone and polyurethane. ACS Appl Mater Interfaces 7(41):22807–22813

    CAS  PubMed  Google Scholar 

  • Su X, Liao Q, Liu L, Meng R, Qian Z, Gao H, Yao J (2016) Cu2O nanoparticle-functionalized cellulose-based aerogel as high-performance visible-light photocatalyst. Cellulose 24(2):1017–1029

    Google Scholar 

  • Sun L, Qian X, Ding C, An X (2018) Integration of graft copolymerization and ring-opening reaction: a mild and effective preparation strategy for “clickable” cellulose fibers. Carbohydr Polym 198:41–50

    CAS  PubMed  Google Scholar 

  • Sun L, Ding C, Qian X, An X (2019) Effective and simple one-step strategy for preparation of “clickable” cellulose modules: support to build antibacterial materials. Cellulose 26(3):1961–1976

    CAS  Google Scholar 

  • Tang J, Song Y, Tanvir S, Anderson WA, Berry RM, Tam KC (2015) Polyrhodanine coated cellulose nanocrystals: a sustainable antimicrobial agent. ACS Sustain Chem Eng 3(8):1801–1809

    CAS  Google Scholar 

  • Tunç S, Duman O (2011) Preparation of active antimicrobial methyl cellulose/carvacrol/montmorillonite nanocomposite films and investigation of carvacrol release. LWT Food Sci Technol 44(2):465–472

    Google Scholar 

  • Tyagi P, Mathew R, Opperman CH, Jameel H, Gonzalez RW, Lucia LA, Hubbe MA, Pal L (2018) High strength antibacterial chitosan-cellulose nanocrystals composite tissue paper. Langmuir 35:104–112

    PubMed  Google Scholar 

  • Wang C, Qian X, An X (2015) In situ green preparation and antibacterial activity of copper-based metal–organic frameworks/cellulose fibers (HKUST-1/CF) composite. Cellulose 22(6):3789–3797

    CAS  Google Scholar 

  • Wang Q, Chen G, Yu Z, Ouyang X, Tian J, Yu M (2018) Photoluminescent composites of lanthanide-based nanocrystal-functionalized cellulose fibers for anticounterfeiting applications. ACS Sustain Chem Eng 6(11):13960–13967

    CAS  Google Scholar 

  • Wei D, Zhou R, Guan Y, Zheng A, Zhang Y (2013) Investigation on the reaction between polyhexamethylene guanidine hydrochloride oligomer and glycidyl methacrylate. J Appl Polym Sci 127(1):666–674

    CAS  Google Scholar 

  • Wei D, Li Z, Wang H, Liu J, **ao H, Zheng A, Guan Y (2017) Antimicrobial paper obtained by dip-coating with modified guanidine-based particle aqueous dispersion. Cellulose 24(9):3901–3910

    CAS  Google Scholar 

  • **ao M, Hu J (2017) Cellulose/chitosan composites prepared in ethylene diamine/potassium thiocyanate for adsorption of heavy metal ions. Cellulose 24(6):2545–2557

    CAS  Google Scholar 

  • **ao G, Ding C, Song F, Qian X, An X (2016) Facile strategy for preparation of alkyne-functionalized cellulose fibers with click reactivity. Cellulose 24(2):591–607

    Google Scholar 

  • Xu WZ, Gao G, Kadla JF (2013) Synthesis of antibacterial cellulose materials using a “clickable” quaternary ammonium compound. Cellulose 20(3):1187–1199

    CAS  Google Scholar 

  • Xu C, Hu X, Wang J, Zhang YM, Liu XJ, **e BB, Yao C, Li Y, Li XS (2015) Library of antifouling surfaces derived from natural amino acids by click reaction. ACS Appl Mater Interfaces 7(31):17337–17345

    CAS  PubMed  Google Scholar 

  • Yang H, van de Ven TG (2016) A bottom-up route to a chemically end-to-end assembly of nanocellulose fibers. Biomacromol 17(6):2240–2247

    CAS  Google Scholar 

  • Yoosefi Booshehri A, Wang R, Xu R (2015) Simple method of deposition of CuO nanoparticles on a cellulose paper and its antibacterial activity. Chem Eng J 262:999–1008

    CAS  Google Scholar 

  • Youssef AM, Kamel S, El-Samahy MA (2013) Morphological and antibacterial properties of modified paper by PS nanocomposites for packaging applications. Carbohydr Polym 98(1):1166–1172

    CAS  PubMed  Google Scholar 

  • Yu X, Tong S, Ge M, Wu L, Zuo J, Cao C, Song W (2013) Synthesis and characterization of multi-amino-functionalized cellulose for arsenic adsorption. Carbohydr Polym 92(1):380–387

    CAS  PubMed  Google Scholar 

  • Yu D, Xu L, Hu Y, Li Y, Wang W (2017) Durable antibacterial finishing of cotton fabric based on thiol–epoxy click chemistry. RSC Adv 7(31):18838–18843

    CAS  Google Scholar 

  • Zahid M, Papadopoulou EL, Suarato G, Binas VD, Kiriakidis G, Gounaki I, Moira O, Venieri D, Bayer IS, Athanassiou A (2018) Fabrication of visible light-induced antibacterial and self-cleaning cotton fabrics using manganese doped TiO2 nanoparticles. ACS Appl Bio Mater 1(4):1154–1164

    CAS  Google Scholar 

  • Zhao SW, Zheng M, Zou XH, Guo Y, Pan QJ (2017) Self-assembly of hierarchically structured cellulose@ZnO composite in solid–liquid homogeneous phase: synthesis, DFT calculations, and enhanced antibacterial activities. ACS Sustain Chem Eng 5(8):6585–6596

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Natural Science Foundation of China (Grant no. 31370579) for financial support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueren Qian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Yang, S., Qian, X. et al. High-efficacy and long term antibacterial cellulose material: anchored guanidine polymer via double “click chemistry”. Cellulose 27, 8799–8812 (2020). https://doi.org/10.1007/s10570-020-03374-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03374-5

Keywords

Navigation