Log in

Fire retardancy and thermal behaviors of Cellulose nanofiber/zinc borate aerogel

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose nanofiber (CNF)/zinc borate (ZB) aerogels were successfully prepared via a facile and simple freeze-drying method. The thermal and combustion behavior of synthesized CNF aerogels and CNF/ZB aerogels were systematically investigated via various experimental techniques, including TGA-DTG analysis, micro-scale combustion calorimetry, cone calorimeter, etc. It was known that the CNF aerogels mainly undergo smoldering combustion. The flame retardancy of CNF aerogels was observed remarkably improved with the introduction of ZB, where the formed carbon layer at the sample surface can prevent heat penetration. It was known from micro-scale calorimeter (MCC) test that the burning of CNF/ZB could not last over 20 s, where peak heat release rate and total heat release decrease by 35.1% and 16.3%, respectively, after 2 wt% ZB was added. Meanwhile, the presence of ZB did not affect the porous structure of CNF, which can be proved by the slightly increased thermal conductivity from 0.0276 to 0.0298 W/m K. Flame retardancy of ZB shows its advantages for cellulose aerogels as the improved flame retardancy by ZB will not compromise its original thermal insulation function. The research outcomes of this study provide a new insight for the flame retardancy of cellulose aerogels.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

Download references

Acknowledgments

This work was financially supported by National Key R&D Program of China (No. 2018YFC0807600), Fundamental Research Funds for the Central Universities (Grant No. WK2320000044) and USTC Research Funds of the Double First-Class Initiative (No. YD2320002002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lunlun Gong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 196 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Zhu, S., Pan, Y. et al. Fire retardancy and thermal behaviors of Cellulose nanofiber/zinc borate aerogel. Cellulose 27, 7463–7474 (2020). https://doi.org/10.1007/s10570-020-03289-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03289-1

Keywords

Navigation