Log in

Highly flame retardant zeolitic imidazole framework-8@cellulose composite aerogels as absorption materials for organic pollutants

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In the current study, Zeolitic Imidazole Framework-8 (ZIF-8) was in situ grown on the surface of cellulose fibers and the ZIF-8@cellulose composite aerogels were fabricated by a freeze-drying method. The flame-retardant, thermal and mechanical characteristics of the cellulose-based aerogels were investigated. SEM images indicated that ZIF-8 was evenly deposited on the surface of the cellulose fibers in the aerogel owing to formation of hydrogen bonding with cellulose molecules. The addition of ZIF-8 enhanced thermal stability and flame retardancy of the host cellulose aerogel. The peak of heat release rate of the ZIF-8@cellulose-3 composite aerogel exhibited a drastic decline from 128 W g−1 to 63 W g−1 and the total heat release from 25.9 kJ g−1 to 14.8 kJ g−1. In the UL-94 vertical burning test, the samples showed self-extinguishing behavior. Additionally, ZIF-8 induced a dramatic enhancement in the mechanical properties of the host cellulose. Specifically, the compressive stress of the ZIF-8@cellulose composite aerogel showed a significant increase from 0.45 to 34.80 MPa. Moreover, the ZIF-8@cellulose composite aerogel can selectively remove the organic pollutants from water and adsorb a wide range of liquid oils with considerable capacities. The current study presented a feasible approach to synthesis of strong and flame-retardant cellulose-based aerogels for waste water purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Alongi J, Malucelli G (2015) Cotton flame retardancy: state of the art and future perspectives. RSC Adv 5:24239–24263

    CAS  Google Scholar 

  • Bi HC, **e X, Yin KB, Zhou YL, Wan S, He LB et al (2012) Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv Funct Mater 22:4421–4425

    CAS  Google Scholar 

  • Cai J, Liu SL, Feng J, Kimura S, Wada M, Kuga S et al (2012) Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew Chem Int Ed 51:2076–2079

    CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    CAS  Google Scholar 

  • Furukawa H, Cordova KE, O'Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444

    PubMed  Google Scholar 

  • Gu PC, Zhang S, Li X, Wang XX, Wen T, Jehan R et al (2018) Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution. Environ Pollut 240:493–505

    CAS  PubMed  Google Scholar 

  • Guo WW, Wang X, Zhang P, Liu JJ, Song L, Hu Y (2018) Nano-fibrillated cellulose-hydroxyapatite based composite foams with excellent fire resistance. Carbohyd Polym 195:71–78

    CAS  Google Scholar 

  • Guo WW, Hu YX, Wang X, Zhang P, Song L, **ng WY (2019a) Exceptional flame-retardant cellulosic foams modified with phosphorus-hybridized graphene nanosheets. Cellulose 26:1247–1260

    CAS  Google Scholar 

  • Guo WW, Kalali EN, Wang X, **ng WY, Zhang P, Song L, Hu Y (2019b) Processing bulk natural bamboo into a strong and flame-retardant composite material. Ind Crop Prod 138:111478

    CAS  Google Scholar 

  • Han YY, Zhang XX, Wu XD, Lu CH (2015) Flame retardant, heat insulating cellulose aerogels from waste cotton fabrics by in situ formation of magnesium hydroxide nanoparticles in cellulose gel nanostructures. ACS Sustain Chem Eng 3:1853–1859

    CAS  Google Scholar 

  • Huang JK, Yan ZF (2018) Adsorption mechanism of oil by resilient graphene aerogels from oil-water emulsion. Langmuir 34:1890–1898

    CAS  PubMed  Google Scholar 

  • Jafari AJ, Alahabadi A, Saghi MH, Rezai Z, Rastegar A, Zamani MS et al (2019) Adsorptive removal of phenol from aqueous solutions using chemically activated rice husk ash: equilibrium, kinetic, and thermodynamic studies. Desalin Water Treat 158:233–244

    Google Scholar 

  • ** H, Li YS, Liu XL, Ban YJ, Peng Y, Jiao WM et al (2015) Recovery of HMF from aqueous solution by zeolitic imidazolate frameworks. Chem Eng Sci 124:170–178

    CAS  Google Scholar 

  • Kaya M (2017) Super absorbent, light, and highly flame retardant cellulose-based aerogel crosslinked with citric acid. J Appl Polym Sci 134:45315

    Google Scholar 

  • Khan E, Virojnagud W, Ratpukdi T (2004) Use of biomass sorbents for oil removal from gas station runoff. Chemosphere 57:681–689

    CAS  PubMed  Google Scholar 

  • Koklukaya O, Carosio F, Waberg L (2017) Superior flame-resistant cellulose nanofibril aerogels modified with hybrid layer-by-layer coatings. ACS Appl Mater Interfaces 9:29082–29092

    PubMed  Google Scholar 

  • Li A, Sun HX, Tan DZ, Fan WJ, Wen SH, Qing XJ et al (2011) Superhydrophobic conjugated microporous polymers for separation and adsorption. Energ Environ Sci 4:2062–2065

    CAS  Google Scholar 

  • Li ZY, Shao L, Hu WB, Zheng TT, Lu LB, Cao Y et al (2018) Excellent reusable chitosan/cellulose aerogel as an oil and organic solvent absorbent. Carbohyd Polym 191:183–190

    CAS  Google Scholar 

  • Likon M, Remskar M, Ducman V, Svegl F (2013) Populus seed fibers as a natural source for production of oil super absorbents. J Environ Manage 114:158–167

    CAS  PubMed  Google Scholar 

  • Lillo-Rodenas MA, Cazorla-Amoros D, Linares-Solano A (2005) Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations. Carbon 43:1758–1767

    CAS  Google Scholar 

  • Liu ZW, Tang YF, Zhao K, Zhang Q (2019) Superhydrophobic SiO2 micro/nanofibrous membranes with porous surface prepared by freeze electrospinning for oil adsorption. Colloid Surface A 568:356–361

    CAS  Google Scholar 

  • Lv SW, Liu JM, Wang ZH, Ma H, Li CY, Zhao N et al (2019) Recent advances on porous organic frameworks for the adsorptive removal of hazardous materials. J Environ Sci-China 80:169–185

    PubMed  Google Scholar 

  • Mi HY, **g X, Huang HX, Peng XF, Turng LS (2018) Superhydrophobic graphene/cellulose/silica aerogel with hierarchical structure as superabsorbers for high efficiency selective oil absorption and recovery. Ind Eng Chem Res 57:1745–1755

    CAS  Google Scholar 

  • Nabipour H, Sadr MH, Bardajee GR (2017) Synthesis and characterization of nanoscale zeolitic imidazolate frameworks with ciprofloxacin and their applications as antimicrobial agents. New J Chem 41:7364–7370

    CAS  Google Scholar 

  • Nadar SS, Rathod VK (2018) Encapsulation of lipase within metal-organic framework (MOF) with enhanced activity intensified under ultrasound. Enzyme Microb Tech 108:11–20

    CAS  Google Scholar 

  • Ruan D, Zhang LN, Mao Y, Zeng M, Li XB (2004) Microporous membranes prepared from cellulose in NaOH/thiourea aqueous solution. J Membrane Sci 241:265–274

    CAS  Google Scholar 

  • Sakthivel T, Reid DL, Goldstein I, Hench L, Seal S (2013) Hydrophobic High Surface Area Zeolites Derived from Fly Ash for Oil Spill Remediation. Environ Sci Technol 47:5843–5850

    CAS  PubMed  Google Scholar 

  • Scheirs J, Camino G, Tumiatti W (2001) Overview of water evolution during the thermal degradation of cellulose. Eur Polym J 37:933–942

    CAS  Google Scholar 

  • Shen J, Zhang P, Song L, Li J, Ji B, Li J, Chen L (2019) Polyethylene glycol supported by phosphorylated polyvinyl alcohol/graphene aerogel as a high thermal stability phase change material. Compos Part B: Eng 179:107545

    CAS  Google Scholar 

  • Shi JJ, Lu LB, Guo WT, Sun YJ, Cao Y (2013a) An environment-friendly thermal insulation material from cellulose and plasma modification. J Appl Polym Sci 130:3652–3658

    CAS  Google Scholar 

  • Shi XW, Hu YL, Tu K, Zhang LN, Wang H, Xu J et al (2013b) Electromechanical polyaniline-cellulose hydrogels with high compressive strength. Soft Matter 9:10129–10134

    CAS  Google Scholar 

  • Shi XW, Dai X, Cao Y, Li JW, Huo CG, Wang XL (2017) Degradable poly(lactic acid)/metal-organic framework nanocomposites exhibiting good mechanical, flame retardant, and dielectric properties for the fabrication of disposable electronics. Ind Eng Chem Res 56:3887–3894

    CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: A review of preparation, properties and applications. Polymers 2:728–765

    CAS  Google Scholar 

  • Wang X, Hu Y, Song L, **ng WY, Lu HD, Lv P, Jie GX (2010) Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer. Polymer 51:2435–2445

    CAS  Google Scholar 

  • Wang X, Hu Y, Song L, **ng WY, Lu HD (2011) Thermal degradation mechanism of flame retarded epoxy resins with a DOPO-substitued organophosphorus oligomer by TG-FTIR and DP-MS. J Anal Appl Pyrol 92:164–170

    CAS  Google Scholar 

  • Wang D, McLaughlin E, Pfeffer R, Lin YS (2012) Adsorption of oils from pure liquid and oil-water emulsion on hydrophobic silica aerogels. Sep Purif Technol 99:28–35

    CAS  Google Scholar 

  • Wang Z, Ma HY, Chu B, Hsiao BS (2017) Super-hydrophobic polyurethane sponges for oil absorption. Sep Sci Technol 52:221–227

    CAS  Google Scholar 

  • Wang G, Qin X, Shen J, Zhang Z, Han D, Jiang C (2019a) Quantitative analysis of microscopic structure and gas seepage characteristics of low-rank coal based on CT three-dimensional reconstruction of CT images and fractal theory. Fuel 256:115900

    CAS  Google Scholar 

  • Wang G, Jiang C, Shen J, Han D, Qin X (2019b) Deformation and water transport behaviors study of heterogenous coal using CT-based 3D simulation. Int J Coal Geol 211:103204

    CAS  Google Scholar 

  • Wang G, Shen J, Liu S, Jiang C, Qin X (2019c) Three-dimensional modeling and analysis of macro-pore structure of coal using combined X-ray CT imaging and fractal theory. Int J Rock Mech Min 123:104082

    Google Scholar 

  • Wang H, Wang CC, Liu S, Chen L, Yang SD (2019d) Superhydrophobic and superoleophilic graphene aerogel for adsorption of oil pollutants from water. RSC Adv 9:8569–8574

    CAS  Google Scholar 

  • Wei G, Miao YE, Zhang C, Yang Z, Liu ZY, Tjiu WW et al (2013) Ni-doped graphene/carbon cryogels and their applications as versatile sorbents for water purification. ACS Appl Mater Interfaces 5:7584–7591

    CAS  PubMed  Google Scholar 

  • Xu WZ, Wang XL, Liu YC, Li W, Chen R (2018) Improving fire safety of epoxy filled with graphene hybrid incorporated with zeolitic imidazolate framework/layered double hydroxide. Polym Degrad Stabil 154:27–36

    CAS  Google Scholar 

  • Yang C, Kaipa U, Mather QZ, Wang XP, Nesterov V, Venero AF et al (2011) Fluorous metal-organic frameworks with superior adsorption and hydrophobic properties toward oil spill cleanup and hydrocarbon storage. J Am Chem Soc 133:18094–18097

    CAS  PubMed  Google Scholar 

  • Yang L, Mukhopadhyay A, Jiao YC, Yong Q, Chen L, **ng YJ et al (2017) Ultralight, highly thermally insulating and fire resistant aerogel by encapsulating cellulose nanofibers with two-dimensional MoS2. Nanoscale 9:11452–11462

    CAS  PubMed  Google Scholar 

  • Zhang C, Yang DY, Zhang T, Qiu FX, Dai YT, Xu JC et al (2017) Synthesis of MnO2/poly(n-butylacrylate-co-butyl methacrylate-co-methyl methacrylate) hybrid resins for efficient oils and organic solvents absorption. J Clean Prod 148:398–406

    CAS  Google Scholar 

  • Zhao SY, Malfait WJ, Guerrero-Alburquerque N, Koebel MM, Nystrom G (2018) Biopolymer aerogels and foams: chemistry, properties, and applications. Angew Chem Int Ed 57:7580–7608

    CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from the National Natural Science Foundation of China (Grant No. 21604081), Anhui Provincial Natural Science Foundation (Grant No. 1908085J20) and the CAS President’s International Fellowship for Postdoctoral Researchers (Grant No.: 2019PE0014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **n Wang or Yuan Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabipour, H., Nie, S., Wang, X. et al. Highly flame retardant zeolitic imidazole framework-8@cellulose composite aerogels as absorption materials for organic pollutants. Cellulose 27, 2237–2251 (2020). https://doi.org/10.1007/s10570-019-02860-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02860-9

Keywords

Navigation