Log in

Polydopamine-coated cellulose nanocrystals as an active ingredient in poly(vinyl alcohol) films towards intensifying packaging application potential

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this research, the dopamine self-polymerization was used to coat polydopamine (PDA) on cellulose nanocrystal (CNC) surfaces, and we integrated the functionality and structural merits of the two components in poly(vinyl alcohol) (PVA) films at a nanometer scale. The results showed that coating PDA on CNCs led to a concurrent increase in strength and break elongation. With increasing PDA@CNC loading level, the Young’s modulus continuously increased, which could be ca. 3.1-fold over that of neat PVA film at a loading level of 15 wt%. Both tensile strength and breaking elongation of the nanocomposite reached the maximum values with 6 wt% PDA@CNC, which were 75.8% and 58.1% more than those of neat PVA, respectively. Besides, the maximum decomposition temperature shifted from 271.3 °C of neat PVA film to 278.5 °C of the nanocomposite containing 6 wt% PDA@CNC, and then was continuously elevated up to 328.2 °C when the PDA@CNC loading level reached 15 wt%. For packaging application, the PDA component contributed to the UV-shielding and radical-scavenging functions, and the PDA@CNC nanofiller reduced the permeability of oxygen and water–vapor into PVA-based composites. Overall, the integrated PDA@CNC nanofiller as an active ingredient enhanced the mechanical, thermal, and functional properties of the PVA-based materials, and hence intensified the potential of their packaging application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdullah ZW, Dong Y, Davies IJ, Barbhuiya S (2017) PVA, PVA blends, and their nanocomposites for biodegradable packaging application. Polym Plast Technol 56:1307–1344

    CAS  Google Scholar 

  • Alin J, Hakkarainen M (2011) Microwave heating causes rapid degradation of antioxidants in polypropylene packaging, leading to greatly increased specific migration to food simulants as shown by ESI-MS and GC–MS. J Agric Food Chem 59:5418–5427

    CAS  PubMed  Google Scholar 

  • Aloui F, Ahajji A, Irmouli Y, George B, Charrier B, Merlin A (2007) Inorganic UV absorbers for the photostabilisation of wood-clearcoating systems: comparison with organic UV absorbers. Appl Surf Sci 253:3737–3745

    CAS  Google Scholar 

  • Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169

    CAS  PubMed  Google Scholar 

  • Chao C et al (2013) Surface modification of halloysite nanotubes with dopamine for enzyme immobilization. ACS Appl Mater Interface 5:10559–10564

    CAS  Google Scholar 

  • Chao C, Zhang B, Zhai R, **ang X, Liu J, Chen R (2014) Natural nanotube-based biomimetic porous microspheres for significantly enhanced biomolecule immobilization. ACS Sustain Chem Eng 2:396–403

    CAS  Google Scholar 

  • Fortunati E et al (2012) Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 87:1596–1605

    CAS  Google Scholar 

  • French AD (2013) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Google Scholar 

  • Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromol 10:162–165

    CAS  Google Scholar 

  • Ghelichkhah Z, Sharifi-Asl S, Farhadi K, Banisaied S, Ahmadi S, Macdonald DD (2015) L-cysteine/polydopamine nanoparticle-coatings for copper corrosion protection. Corros Sci 91:129–139

    CAS  Google Scholar 

  • Hakalahti M, Salminen A, Seppala J, Tammelin T, Hanninen T (2015) Effect of interfibrillar PVA bridging on water stability and mechanical properties of TEMPO/NaClO2 oxidized cellulosic nanofibril films. Carbohydr Polym 126:78–82

    CAS  PubMed  Google Scholar 

  • Hambardzumyan A, Foulon L, Chabbert B, Aguiébéghin V (2012) Natural organic UV-Absorbent coatings based on cellulose and lignin: designed effects on spectroscopic properties. Biomacromol 13:4081–4088

    CAS  Google Scholar 

  • Han Y, Wu X, Zhang X, Zhou Z, Lu C (2016) Dual functional biocomposites based on polydopamine modified cellulose nanocrystal for Fe3+-pollutant detecting and autoblocking. ACS Sustain Chem Eng 4:5667–5673

    CAS  Google Scholar 

  • Huang S et al (2013) Complexes of polydopamine-modified clay and ferric ions as the framework for pollutant-absorbing supramolecular hydrogels. Langmuir 29:1238–1244

    CAS  PubMed  Google Scholar 

  • Kim JH et al (2015) Review of nanocellulose for sustainable future materials. Int J Precis Eng Manuf Green Technol 2:197–213

    Google Scholar 

  • Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Bao RY, Gao T, Liu ZY, **e BH, Yang MB, Yang W (2019) Dopamine-induced functionalization of cellulose nanocrystals with polyethylene glycol towards poly(L-lactic acid) bionanocomposites for green packaging. Carbohydr Polym 203:275–284

    CAS  PubMed  Google Scholar 

  • Lin N, Huang J, Chang PR, Feng JW, Yu JH (2011) Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid). Carbohydr Polym 83:1834–1842

    CAS  Google Scholar 

  • Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4:3274–3294

    CAS  Google Scholar 

  • Liu W et al (2013) Embedding dopamine nanoaggregates into a poly(dimethylsiloxane) membrane to confer controlled interactions and free volume for enhanced separation performance. J Mater Chem A 1:3713–3723

    CAS  Google Scholar 

  • Lopez DDC, Nerin C, Alfaro P, Catala R, Gavara R, Hernandez-Munoz P (2011) Development of new antioxidant active packaging films based on ethylene vinyl alcohol copolymer (EVOH) and green tea extract. J Agric Food Chem 59:7832–7840

    Google Scholar 

  • Miltz J, Rosen-Doody V (2010) Migration of styrene monomer from polystyrene packaging materials into food simulants. J Food Process Preserv 8:151–161

    Google Scholar 

  • Narayanan KB, Han SS (2017) Dual-crosslinked poly(vinyl alcohol)/sodium alginate/silver nanocomposite beads—a promising antimicrobial material. Food Chem 234:103–110

    CAS  PubMed  Google Scholar 

  • Peng Z, Kong LX (2007) A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites. Polym Degred Stabil 92:1061–1071

    CAS  Google Scholar 

  • Phua SL, Yang L, Toh CL, Guoqiang D, Lau SK, Dasari A, Lu X (2013) Simultaneous enhancements of UV resistance and mechanical properties of polypropylene by incorporation of dopamine-modified clay. ACS Appl Mater Interface 5:1302–1309

    CAS  Google Scholar 

  • Prataviera R, Pollet E, Bretas RES, Averous L, Lucas AA (2018) Nanocomposites based on renewable thermoplastic polyurethane and chemically modified cellulose nanocrystals with improved mechanical properties. J Appl Polym Sci 135:46736

    Google Scholar 

  • Sa R, Yan Y, Wei Z, Zhang L, Wang W, Tian M (2014) Surface modification of aramid fibers by bio-inspired poly(dopamine) and epoxy functionalized silane grafting. ACS Appl Mater Interface 6:21730–21738

    CAS  Google Scholar 

  • Salam A, Lucia LA, Jameel H (2013) A novel cellulose nanocrystals-based approach to improve the mechanical properties of recycled paper. ACS Sustain Chem Eng 1:1584–1592

    CAS  Google Scholar 

  • Santamaria-Echart A, Ugarte L, Garcia-Astrain C, Arbelaiz A, Corcuera MA, Eceiza A (2016) Cellulose nanocrystals reinforced environmentally-friendly waterborne polyurethane nanocomposites. Carbohydr Polym 151:1203–1209

    CAS  PubMed  Google Scholar 

  • Shang Y, Peng Y (2007) Research of a PVA composite ultrafiltration membrane used in oil-in-water. Desalination 204:322–327

    CAS  Google Scholar 

  • Shende P, Oza B, Gaud RS (2018) Silver-doped titanium dioxide nanoparticles encapsulated in chitosan–PVA film for synergistic antimicrobial activity. Int J Polym Mater Polym Biomater 67:1080–1086

    CAS  Google Scholar 

  • Siripatrawan U, Harte BR (2010) Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocoll 24:770–775

    CAS  Google Scholar 

  • Sonkaew P, Sane A, Suppakul P (2012) Antioxidant activities of curcumin and ascorbyl dipalmitate nanoparticles and their activities after incorporation into cellulose-based packaging films. J Agric Food Chem 60:5388–5399

    CAS  PubMed  Google Scholar 

  • Theapsak S, Watthanaphanit A, Rujiravanit R (2012) Preparation of chitosan-coated polyethylene packaging films by DBD plasma treatment. ACS Appl Mater Interface 4:2474–2482

    CAS  Google Scholar 

  • Wu X, Lu C, Zhang X, Zhou Z (2015) Conductive natural rubber/carbon black nanocomposites via cellulose nanowhisker templated assembly: tailored hierarchical structure leading to synergistic property enhancements. J Mater Chem A 3:13317–13323

    CAS  Google Scholar 

  • Xu Q et al (2014) Polydopamine-coated cellulose microfibrillated membrane as high performance lithium-ion battery separator. RSC Adv 4:7845–7850

    CAS  Google Scholar 

  • Yang C-C, Lee Y-J (2009) Preparation of the acidic PVA/MMT nanocomposite polymer membrane for the direct methanol fuel cell (DMFC). Thin Solid Films 517:4735–4740

    CAS  Google Scholar 

  • Yang J, Han C-R, Zhang X-M, Xu F, Sun R-C (2014a) Cellulose nanocrystals mechanical reinforcement in composite hydrogels with multiple cross-links: correlations between dissipation properties and deformation mechanisms. Macromolecules 47:4077–4086

    CAS  Google Scholar 

  • Yang Y, Shapter JG, Popelka-Filcoff R, Bennett JW, Ellis AV (2014b) Copper removal using bio-inspired polydopamine coated natural zeolites. J Hazard Mater 273:174–182

    Google Scholar 

  • Youssef AM, El-Sayed SM, Salama HH, El-Sayed HS, Dufresne A (2015) Evaluation of bionanocomposites as packaging material on properties of soft white cheese during storage period. Carbohydr Polym 132:274–285

    CAS  PubMed  Google Scholar 

  • Yu Z, Li B, Chu J, Zhang P (2018) Silica in situ enhanced PVA/chitosan biodegradable films for food packages. Carbohydr Polym 184:214–220

    CAS  PubMed  Google Scholar 

  • Zehetmeyer G, Soares RMD, Brandelli A, Mauler RS, Oliveira RVB (2012) Evaluation of polypropylene/montmorillonite nanocomposites as food packaging material. Polym Bull 68:2199–2217

    CAS  Google Scholar 

  • Zemljič LF, Tkavc T, Vesel A, Šauperl O (2013) Chitosan coatings onto polyethylene terephthalate for the development of potential active packaging material. Appl Surf Sci 265:697–703

    Google Scholar 

  • Zhao D, Lei Q, Qin C, Bai X (2012) Biocomposites reinforced with cellulose nanocrystals derived from potato peel waste. Carbohydr Polym 90:709–716

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51373131) and Talent Project of Southwest University (SWU115034).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **aozhou Ma or ** Huang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 911 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Chen, Y., Liu, C. et al. Polydopamine-coated cellulose nanocrystals as an active ingredient in poly(vinyl alcohol) films towards intensifying packaging application potential. Cellulose 26, 9599–9612 (2019). https://doi.org/10.1007/s10570-019-02749-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02749-7

Keywords

Navigation