Log in

Oxygen-assisted ethanol organosolv pretreatment of sugarcane bagasse for efficient removal of hemicellulose and lignin

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Hemicellulose and lignin act as physical barriers impeding the hydrolysis of lignocellulosic biomass by cellulases. To develop a process which could simultaneously remove most hemicellulose and lignin in biomass, in this study, oxygen-assisted ethanol organosolv pretreatment (O2-EOP) of sugarcane bagasse (SCB) was carried out. The effects of temperature, time, oxygen pressure and ethanol concentration on the pH of the hydrolysate, the solubilization and the chemical composition of SCB were investigated. Compared with autocatalytic EOP and acid-catalyzed EOP, O2-EOP could remove most xylan and lignin from SCB at much milder conditions. At optimized conditions (40/60 ethanol/water (v/v), 1.5 MPa O2, 160 °C and 80 min), 82.9% xylan and 83.3% lignin were removed. Glucan content in the residue reached 86.3%, much higher than results obtained by autocatalytic EOP and acid-catalyzed EOP. In subsequent enzymatic hydrolysis (1% solid loading, 4.96 mg protein/g cellulose, 72 h), O2-EOP pretreated SCB produced 3.97 and 1.90 times more glucose than untreated material and N2-EOP pretreated SCB, respectively. O2-EOP also produced abundant organic acids, total amounts of formic acid and acetic acid in the hemicellulose hydrolysate reached 5.42 g/L. In conclusion, O2-assisted EOP was an effective process for the production of pulp with high cellulose purity and good accessibility to cellulases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29(6):675–685

    Article  CAS  PubMed  Google Scholar 

  • Agnihotri S, Johnsen IA, Boe MS, Oyaas K, Moe S (2015) Ethanol organosolv pretreatment of softwood (Picea abies) and sugarcane bagasse for biofuel and biorefinery applications. Wood Sci Technol 49(5):881–896

    Article  CAS  Google Scholar 

  • Arato C, Pye EK, Gjennestad G (2005) The lignol approach to biorefining of woody biomass to produce ethanol and chemicals. Appl Biochem Biotechnol 121:871–882

    Article  PubMed  Google Scholar 

  • Area CM, Felissia FE, Vallejos ME (2009) Ethanol-water fractionation of sugar cane bagasse catalyzed with acids. Cellul Chem Technol 43(7–8):271–279

    CAS  Google Scholar 

  • Bates RG, Baabo M, Robinson RA (1963) Interpretation of pH measurements in alcohol-water solvents. J Phys Chem 67(9):1833–1838

    Article  CAS  Google Scholar 

  • Cannella D, Jorgensen H (2014) Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production? Biotechnol Bioeng 111(1):59–68

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Tan HM (2004) Structural characterization of cellulose with enzymatic treatment. J Mol Struct 705(1–3):189–193

    Article  CAS  Google Scholar 

  • Demesa AG, Laari A, Turunen I, Sillanpaa M (2015) Alkaline partial wet oxidation of lignin for the production of carboxylic acids. Chem Eng Technol 38(12):2270–2278

    Article  CAS  Google Scholar 

  • Duff SJB, Murray WD (1996) Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Biores Technol 55(1):1–33

    Article  CAS  Google Scholar 

  • Evtuguin DV, Deineko IP, Neto CP (1999) Oxygen delignification in aqueous organic solvents media. Cellul Chem Technol 33(1–2):103–123

    CAS  Google Scholar 

  • Gandolfi S, Ottolina G, Consonni R, Riva S, Patel I (2014) Fractionation of hemp hurds by organosolv pretreatment and its effect on production of lignin and sugars. Chemsuschem 7(7):1991–1999

    Article  CAS  PubMed  Google Scholar 

  • Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59(2):257–268

    Article  CAS  Google Scholar 

  • Gupta R, Lee YY (2009) Mechanism of cellulase reaction on pure cellulosic substrates. Biotechnol Bioeng 102(6):1570–1581

    Article  CAS  PubMed  Google Scholar 

  • Ho CL, Wang EIC, Su YC (2009) Tetrahydrofurfuryl alcohol (THFA) pul** of rice straw. J Wood Chem Technol 29(2):101–118

    Article  CAS  Google Scholar 

  • Kristensen JB, Felby C, Jorgensen H (2009) Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnol Biofuels 2:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Huang Y, Guo Q, Fu Y (2014) Production of acetic acid from lignocellulosic biomass in the presence of mineral acid and oxygen under hydrothermal condition. Acta Chim Sin 72(12):1223–1227

    Article  CAS  Google Scholar 

  • Li XK, Fang Z, Luo J, Su TC (2016) Coproduction of furfural and easily hydrolyzable residue from sugar cane bagasse in the MTHF/aqueous biphasic system: influence of acid species, NaCl addition, and MTHF. ACS Sustain Chem Eng 4(10):5804–5813

    Article  CAS  Google Scholar 

  • Liu ZH, Fatehi P, Jahan MS, Ni YH (2011) Separation of lignocellulosic materials by combined processes of pre-hydrolysis and ethanol extraction. Biores Technol 102(2):1264–1269

    Article  CAS  Google Scholar 

  • Martin C, Klinke HB, Thomsen AB (2007) Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzyme Microbial Technol 40(3):426–432

    Article  CAS  Google Scholar 

  • Mesa L, Gonzalez E, Ruiz E, Romero I, Cara C, Felissia F, Castro E (2010) Preliminary evaluation of organosolv pre-treatment of sugar cane bagasse for glucose production: application of 2(3) experimental design. Appl Energy 87(1):109–114

    Article  CAS  Google Scholar 

  • Nguyen TY, Cai CM, Kumar R, Wyman CE (2015) Co-solvent pretreatment reduces costly enzyme requirements for high sugar and ethanol yields from lignocellulosic biomass. Chemsuschem 8(10):1716–1725

    Article  CAS  PubMed  Google Scholar 

  • Ohgren K, Bura R, Saddler J, Zacchi G (2007) Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Biores Technol 98(13):2503–2510

    Article  CAS  Google Scholar 

  • Resch M, Baker J, Decker S (2015) Low solids enzymatic saccharification of lignocellulosic biomass. National Renewable Energy Laboratory. Document # NREL/TP-5100-63351

  • Ricq N, Barbati S, Ambrosio M (2000) Optimization of the degradation of sewage sludge by wet air oxidation. Study of the reaction mechanism on a cellulose model compound. Analusis 28(9):872–877

    Article  CAS  Google Scholar 

  • Schwiderski M, Kruse A, Grandl R, Dockendorf D (2014) Comparison of the influence of a Lewis acid AlCl3 and a Bronsted acid HCl on the organosolv pul** of beech wood. Green Chem 16(3):1569–1578

    Article  CAS  Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter B (2008) Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory. Document # NREL/TP-510-42618

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein suing bicinchoninic acid. Anal Biochem 150(1):76–85

    Article  CAS  PubMed  Google Scholar 

  • Sun SN, Sun SL, Cao XF, Sun RC (2016) The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Biores Technol 199:49–58

    Article  CAS  Google Scholar 

  • Teramoto Y, Lee SH, Endo T (2009) Cost reduction and feedstock diversity for sulfuric acid-free ethanol cooking of lignocellulosic biomass as a pretreatment to enzymatic saccharification. Biores Technol 100(20):4783–4789

    Article  CAS  Google Scholar 

  • Teramura H, Sasaki K, Oshima T, Matsuda F, Okamoto M, Shirai T, Kawaguchi H, Ogino C, Hirano K, Sazuka T, Kitano H, Kikuchi J, Kondo A (2016) Organosolv pretreatment of sorghum bagasse using a low concentration of hydrophobic solvents such as 1-butanol or 1-pentanol. Biotechnol Biofuels 9:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • vom Stein T, Grande PM, Kayser H, Sibilla F, Leitner W, Dominguez de Maria P (2011) From biomass to feedstock: one-step fractionation of lignocellulose components by the selective organic acid-catalyzed depolymerization of hemicellulose in a biphasic system. Green Chem 13(7):1772–1777

    Article  CAS  Google Scholar 

  • Wei W, Wu S, Xu S (2017) Enhancement of enzymatic saccharification of bagasse by ethanol-based organosolv auto-catalyzed pretreatment. J Chem Technol Biotechnol 92(3):570–577

    Google Scholar 

  • Wildschut J, Smit AT, Reith JH, Huijgen WJJ (2013) Ethanol-based organosolv fractionation of wheat straw for the production of lignin and enzymatically digestible cellulose. Biores Technol 135:58–66

    Article  CAS  Google Scholar 

  • Xue S, Uppugundla N, Bowman MJ, Cavalier D, Sousa LDC, Dale BE, Balan V (2015) Sugar loss and enzyme inhibition due to oligosaccharide accumulation during high solids-loading enzymatic hydrolysis. Biotechnol Biofuels 8:195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang RM, Lucia L, Ragauskas AJ, Jameel H (2003) Oxygen delignification chemistry and its impact on pulp fibers. J Wood Chem Technol 23(1):13–29

    Article  CAS  Google Scholar 

  • Zhang H, Wu S (2015) Generation of lignin and enzymatically digestible cellulose from ethanol-based organosolv pretreatment of sugarcane bagasse. Cellulose 22(4):2409–2418

    Article  CAS  Google Scholar 

  • Zhang JZ, Ma XX, Yu JL, Zhang X, Tan TW (2011) The effects of four different pretreatments on enzymatic hydrolysis of sweet sorghum bagasse. Biores Technol 102(6):4585–4589

    Article  CAS  Google Scholar 

  • Zhang ZY, Harrison MD, Rackemann DW, Doherty WOS, O’Hara IM (2016) Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification. Green Chem 18(2):360–381

    Article  CAS  Google Scholar 

  • Zhao XB, Cheng KK, Liu DH (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82(5):815–827

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Part of the results of this study were presented on the 6th international conference on biorefinery (ICB 2017) held in Christchurch, New Zealand. Special thanks are given to Professor Zhen Fang from Nan**g Agricultural University, College of Engineering for revising the manuscript and checking the data. The author wishes to acknowledge the financial support from School of Environment and Energy, Peking University-Shenzhen Graduate School and **shuangbanna Tropical Batanical Garden, Chinese Academy of Sciences. Thanks are also given to the Central Laboratory of **shuangbanna Tropical Botanical Garden for SEM analysis and Novozymes for providing liquid cellulase sample Cellic CTec2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ngkang Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 352 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Luo, Y., Daroch, M. et al. Oxygen-assisted ethanol organosolv pretreatment of sugarcane bagasse for efficient removal of hemicellulose and lignin. Cellulose 25, 5511–5522 (2018). https://doi.org/10.1007/s10570-018-1960-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1960-7

Keywords

Navigation