Log in

Cytogenetic biomonitoring of inhabitants of a large uranium mineralization area: the municipalities of Monte Alegre, Prainha, and Alenquer, in the State of Pará, Brazil

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Uranium is a natural radioactive metallic element; its effect on the organism is cumulative, and chronic exposure to this element can induce carcinogenesis. Three cities of the Amazon region—Monte Alegre, Prainha, and Alenquer—in North Brazil, are located in one of the largest uranium mineralization areas of the world. Radon is a radioactive gas, part of uranium decay series and readily diffuses through rock. In Monte Alegre, most of the houses are built of rocks removed from the Earth’s crust in the forest, where the uranium reserves lie. The objective of the present work is to determine the presence or absence of genotoxicity and risk of carcinogenesis induced by natural exposure to uranium and radon in the populations of these three cities. The frequency of micronuclei (MN) and chromosomal aberrations (CA) showed no statistically significant differences between the control population and the three study populations (P > 0.05). MN was also analyzed using the fluorescence in situ hybridization (FISH) technique, with a centromere-specific probe. No clastogenic and/or aneugenic effects were found in the populations. Using FISH analysis, other carcinogenesis biomarkers were analyzed, but neither the presence of the IGH/BCL2 translocation nor an amplification of the MYC gene and 22q21 region was detected. Clastogenicity and DNA damage were also not found in the populations analyzed using the alkaline comet assay. The mitotic index showed no cytotoxicity in the analyzed individuals’ lymphocytes. Once we do not have data concerning radiation doses from other sources, such as cosmic rays, potassium, thorium, or anthropogenic sources, it is hard to determine if uranium emissions in this geographic region where our study population lives are too low to cause significant DNA damage. Regardless, genetic analyses suggest that the radiation in our study area is not high enough to induce DNA alterations or to interfere with mitotic apparatus formation. It is also possible that damages caused by radiation doses undergo cellular repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

DU:

Depleted uranium

CAs:

Chromosomal aberrations

MN:

Micronuclei

FISH:

Fluorescence in situ hybridization

ALL:

Acute lymphoblastic leukemia

MI:

Mitotic index

References

  • Army Environmental Policy Institute. Health and Environmental Consequences of Depleted Uranium Use in the US Army. Atlanta, GA: Army Environmental Policy Institute. 1995.

  • Attia SM. Chromosomal composition of micronuclei in mouse bone marrow treated with rifampicin and nicotine, analyzed by multicolor fluorescence in situ hybridization with pancentromeric DNA probe. Toxicology. 2007;235:112–8.

    Article  PubMed  CAS  Google Scholar 

  • Au WW. Abnormal chromosome repair and risk of develo** cancer. Environ Health Perspect. 1993;101:303–8.

    Article  PubMed  CAS  Google Scholar 

  • Axelson O, Fredrikson M, Akerblom G, Hardell L. Leukemia in childhood and adolescence and exposure to ionizing radiation in homes built from uranium-containing alum shale concrete. Epidemiology. 2002;13:146–50.

    Article  PubMed  Google Scholar 

  • Baias PF, Hofmann W, Winkler-Heil R, Cosma C, Duliu OG. Lung dosimetry for inhaled radon progeny in smokers. Radiat Prot Dosimetry. 2010;138: 111–8.

    Google Scholar 

  • Bailey MR, Beral V, Clayton B, Darby SC, Goodhead DT, Hendry JH, et al. The health hazards of depleted uranium munitions. 2001. http://royalsociety.org/displaypagedoc.asp?id=11496. Accessed 14 October 2008.

  • Bäsecke J, Griesinger F, Trümper L, Brittinger G. Leukemia- and lymphoma-associated genetic aberrations in healthy individuals. Ann Hematol. 2002;81:64–75.

    Article  PubMed  CAS  Google Scholar 

  • Bauchinger M, Schmid E, Braselmann H, Kulka U. Chromosome aberrations in peripheral lymphocytes from occupants of houses with elevated indoor radon concentrations. Mutat Res. 1994;310:135–42.

    PubMed  CAS  Google Scholar 

  • Bonassi S, Fenech M, Lando C, Lin YP, Ceppi M, Chang WP, et al. HUman MicroNucleus project: international database comparison for results with the cytokinesis-block micronucleus assay in human lymphocytes: I. Effect of laboratory protocol, scoring criteria, and host factors on the frequency of micronuclei. Environ Mol Mutagen. 2001;37:31–45.

    Article  PubMed  CAS  Google Scholar 

  • Bonassi S, Znaor A, Ceppi M, Lando C, Chang WP, Holland N, et al. An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans. Carcinogenesis. 2007;28:625–31.

    Article  PubMed  CAS  Google Scholar 

  • Brassesco MS. Leukemia/lymphoma-associated gene fusions in normal individuals. Genet Mol Res. 2008;7:782–90.

    Article  PubMed  CAS  Google Scholar 

  • Brugge D, de Lemos JL, Oldmixon B. Exposure pathways and health effects associated with chemical and radiological toxicity of natural uranium: a review. Rev Environ Health. 2005;20:177–93.

    PubMed  CAS  Google Scholar 

  • Calcagno DQ, Leal MF, Assumpção PP, Smith MA, Burbano RR. MYC and gastric adenocarcinoma carcinogenesis. World J Gastroenterol. 2008;14:5962–8.

    Article  PubMed  CAS  Google Scholar 

  • Carrano AV, Natarajan AT. International commission for protection against environmental mutagens and carcinogens. ICPEMC publication no. 14. Considerations for population monitoring using cytogenetic techniques. Mutat Res. 1988;204:379–406.

    Article  PubMed  CAS  Google Scholar 

  • Carrière M, Avoscan L, Collins R, Carrot F, Khodja H, Ansoborlo E, et al. Influence of uranium speciation on normal rat kidney (NRK-52E) proximal cell cytotoxicity. Chem Res Toxicol. 2004;17:446–52.

    Article  PubMed  CAS  Google Scholar 

  • Catelinois O, Rogel A, Laurier D, Billon S, Hemon D, Verger P, Tirmarche M. Lung cancer attributable to indoor radon exposure in France: impact of the risk models and uncertainty analysis. Environ Health Perspect. 2006;114:1361–6.

    Article  CAS  Google Scholar 

  • Chang WP, Hsich WA, Chen DP, Lin YP, Hwang JS, Hwang JJ, et al. Change in centromeric and acentromeric micronucleus frequencies in human populations after chronic radiation exposure. Mutagenesis. 1999;14:427–32.

    Article  PubMed  CAS  Google Scholar 

  • Chazel V, Houpert P, Ansoborlo E, Henge-Napoli MH, Paquet F. Variation of solubility, biokinetics and dose coefficient of industrial uranium oxides according to specific surface area. Radiat Prot Dosimetry. 2000;88:223–31.

    CAS  Google Scholar 

  • Chiu BC, Dave BJ, Blair A, Gapstur SM, Zahm SH, Weisenburger DD. Agricultural pesticide use and risk of t(14;18)-defined subtypes of non-Hodgkin lymphoma. Blood. 2006;108:1363–9.

    Article  PubMed  CAS  Google Scholar 

  • Chiu BC, Lan Q, Dave BJ, Blair A, Zahm SH, Weisenburger DD. The utility of t(14;18) in understanding risk factors for non-Hodgkin lymphoma. J Natl Cancer Inst Monogr. 2008;39:69–73.

    Article  PubMed  CAS  Google Scholar 

  • Chung HJ, Levens D. C-myc expression: keep the noise down! Mol Cells. 2005;20:157–66.

    PubMed  CAS  Google Scholar 

  • Costa Raiol LC, Figueira Silva EC, Mendes da Fonseca D, Leal MF, Guimarães AC, Calcagno DQ, et al. Interrelationship between MYC gene numerical aberrations and protein expression in individuals from northern Brazil with early gastric adenocarcinoma. Cancer Genet Cytogenet. 2008;181:31–5.

    Article  PubMed  CAS  Google Scholar 

  • Dias FL, Antunes LMG, Rezende PA, Carvalho FES, Silva CMD, Matheus JM, et al. Cytogenetic analysis in lymphocytes from workers occupationally exposed to low levels of ionizing radiation. Environ Toxicol Pharmacol. 2007;23:228–33.

    Article  CAS  Google Scholar 

  • Dorsey CD, Engelhardt SM, Squibb KS, McDiarmid MA. Biological monitoring for depleted uranium exposure in U.S. Veterans. Environ Health Perspect. 2009;117:953–6.

  • El-Dine NW, Sroor A, el-Shershaby A, el-Bahi SM, Ahmed F. Radioactivity in local and imported kaolin types used in Egypt. Appl Radiat Isot. 2004;60:105–9.

    Google Scholar 

  • Fenech M. The cytokinesis-block micronucleus technique and its application to genotoxicity studies in human populations. Environ Health Perspect. 1993;3:101–7.

    Article  Google Scholar 

  • Fenech M, Morley AA. Measurement of micronuclei in lymphocytes. Mutat Res. 1985;147:29–36.

    PubMed  CAS  Google Scholar 

  • Fenech M, Holland N, Chang WP, Zeiger E, Bonassi S. The human micronucleus project—an international collaborative study on the use of the micronucleus technique for measuring DNA damage in humans. Mutat Res. 1997;428:271–83.

    Google Scholar 

  • Fenech M, Chang WP, Kirsch-Volders M, Holland N, Bonassi S, Zeiger E. HUman MicronNucleus project. HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat Res. 2003;534:65–75.

    PubMed  CAS  Google Scholar 

  • GAO (United States General Accounting Office). Gulf War illness. Understanding of health effects from DU evolving but safety training needed GAO/NSIAD-00-70. 2000.

  • Gourabi H, Mozdarani H. A cytokinesis-blocked micronucleus study of the radioadaptative response of lymphocytes of individuals occupationally exposed to chronic doses of radiation. Mutagenesis. 1998;13:475–80.

    Article  PubMed  CAS  Google Scholar 

  • Guimarães AC, Quintana LG, Leal MF, Takeno SS, Assumpção PP, Lima EM, et al. Aneuploidy of chromosome 8 detected by fluorescence in situ hybridisation in ACP01 cell line gastric adenocarcinoma. Clin Exp Med. 2006;6:129–33.

    Article  Google Scholar 

  • Hindin R, Brugge D, Panikkar B. Teratogenicity of depleted uranium aerosols: a review from an epidemiological perspective. Environ Health. 2005;4:17.

    Article  PubMed  Google Scholar 

  • Hopman AH, Ramaekers FC, Raap AK, Beck JL, Devilee P, Van Der Ploeg M, et al. In situ hybridization as a tool to study numerical chromosome aberrations in solid bladder tumors. Histochemistry. 1988;89:307–16.

    Article  PubMed  CAS  Google Scholar 

  • Ibrulj S, Krunic-Haveric A, Haveric S, Pojskic N, Hadziselimovic R. Micronuclei occurrence in population exposed to depleted uranium and control human group in correlation with sex, age and smoking habit. Med Arh. 2004;58:335–8.

    PubMed  Google Scholar 

  • Ibrulj S, Haverić S, Haverić A. Chromosome aberrations as bioindicators of environmental genotoxicity. Bosn J Basic Med Sci. 2007;7:311–6.

    PubMed  Google Scholar 

  • International Atomic Energy Agency, IAEA. Chromosomal aberration analysis for dose assessment. In: Biological dosimetry. Technical reports series no. 260. IAEA, Vienna, Austria. 1986.

  • International Commission on Radiological Protection – ICRP. Protection against radon-222 at home and at work. Ann ICRP. 1993;65:23.

    Google Scholar 

  • Janz S, Potter M, Rabkin CS. Lymphoma- and leukemia-associated chromosomal translocations in healthy individuals. Genes Chromosomes Cancer. 2003;36:211–23.

    Article  PubMed  CAS  Google Scholar 

  • Jiang F, Lin F, Price R, Gu J, Medeiros LJ, Zhang HZ, et al. Rapid detection of IgH/BCL2 rearrangement in follicular lymphoma by interphase fluorescence in situ hybridization with bacterial artificial chromosome probes. J Mol Diagn. 2002;4:144–9.

    PubMed  CAS  Google Scholar 

  • Joseph LJ, Patwardhan UM, Samuel AB. Frequency of micronuclei in peripheral blood lymphocytes from subjects occupationally exposed to low levels of ionizing radiation. Mutat Res. 2004;564:83–8.

    PubMed  CAS  Google Scholar 

  • Kapka L, Baumgartner A, Siwińska E, Knudsen LE, Anderson D, Mielzyńska D. Environmental lead exposure increases micronuclei in children. Mutagenesis. 2007;22:201–7.

    Article  PubMed  CAS  Google Scholar 

  • Kathren RL. Radioactivity in the environment: sources, distribution and surveillance. New York: Harwood Academic; 1984. p. 397.

    Google Scholar 

  • Kathren RL. NORM sources and their origins. Appl Radiat lsot. 1998;49:149–68.

    Article  CAS  Google Scholar 

  • Ketelslegers HB, Gottschalk RW, Koppen G, Schoeters G, Baeyens WF, van Larebeke NA, et al. Multiplex genoty** as a biomarker for susceptibility to carcinogenic exposure in the FLEHS biomonitoring study. Cancer Epidemiol Biomarkers Prev. 2008;17:1902–12.

    Article  PubMed  CAS  Google Scholar 

  • Korsmeyer SJ. BCL-2 gene family and the regulation of programmed cell death. Cancer Res. 1999;59:1693–700.

    Google Scholar 

  • Krunić A, Haverić S, Ibrulj S. Micronuclei frequencies in peripheral blood lymphocytes of individuals exposed to depleted uranium. Arh Hig Rada Toksikol. 2005;56:227–32.

    PubMed  Google Scholar 

  • Kryscio A, Ulrich Müller WU, Wojcik A, Kotschy N, Grobelny S, Streffer C. A cytogenetic analysis of the long-term effect of uranium mining on peripheral lymphocytes using the micronucleus-centromere assay. Int J Radiat Biol. 2001;77:1087–93.

    Article  PubMed  CAS  Google Scholar 

  • Kurttio P, Harmoinen A, Saha H, Salonen L, Karpas Z, Komulainen H, et al. Kidney toxicity of ingested uranium from drinking water. Am J Kidney Dis. 2006;47:972–82.

    Article  PubMed  CAS  Google Scholar 

  • Lin RH, Wu LJ, Lee CH, Lin-Shiau SY. Cytogenetic toxicity of uranyl nitrate in Chinese hamster ovary cells. Mutat Res. 1993;319:197–203.

    Article  PubMed  CAS  Google Scholar 

  • Lipsztein JL, da Cunha KM, Azeredo AM, Julião L, Santos M, Melo DR, et al. Exposure of workers in mineral processing industries in Brazil. J Environ Radioactivity. 2001;54:189–99.

    Article  CAS  Google Scholar 

  • Liu Y, Hernandez AM, Shibata D, Cortopassi GA. BCL2 translocation frequency rises with age in humans. Proc Natl Acad Sci U S A. 1994;91:8910–14.

    Article  PubMed  CAS  Google Scholar 

  • McDiarmid MA, Engelhardt S, Oliver M, Gucer P, Wilson PD, Kane R, et al. Health effects of depleted uranium on exposed Gulf War veterans: a 10-year follow-up. J Toxicol Environ Health A. 2004;67:277–96.

    Google Scholar 

  • McHale CM, Lan Q, Corso C, Li G, Zhang L, Vermeulen R, et al. Chromosome translocations in workers exposed to benzene. J Natl Cancer Inst Monogr. 2008;39:74–7.

    Article  PubMed  CAS  Google Scholar 

  • Meijerink JP. t(14;18), a journey to eternity. Leukemia. 1997;11:2175–87.

    Article  PubMed  CAS  Google Scholar 

  • Melo VP. Avaliação da concentração do 222Rn nos ambientes internos e externos em residências do município de Monte Alegre, PA. Rio de Janeiro: Instituto de Biofísica Carlos Chagas Filho; 1999.

    Google Scholar 

  • Mészáros G, Bognár G, Köteles GJ. Long-term persistence of chromosome aberrations in uranium miners. J Occup Health. 2004;46:310–5.

    Article  PubMed  Google Scholar 

  • Meyer N, Kim SS, Penn LZ. The Oscar-Worthy role of Myc in apoptosis. Semin Cancer Biol. 2006;16:275–87.

    Article  PubMed  CAS  Google Scholar 

  • Milaci S, Petrovi D, Jovici D, Kovacevi R, Simi J. Examination of the health status of populations from depleted-uranium-contaminated regions. Environ Res. 2004;95:2–10.

    Google Scholar 

  • Miller AC, Blakely WF, Livengood D, Whittaker T, Xu J, Ejnik JW, et al. Transformation of human osteoblast cells to the tumorigenic phenotype by depleted uranium–uranyl chloride. Environ Health Perspect. 1998;106:465–71.

    Article  PubMed  CAS  Google Scholar 

  • Miller AC, Xu J, Mog S, Mckinney L, Page N. Neoplastic transformation of human osteoblast cells to the tumorigenic phenotype by heavy metal-tungsten alloy particles: induction of genotoxic effects. Carcinogenesis. 2001a;22:115–26.

    Article  PubMed  CAS  Google Scholar 

  • Miller AC, Xu J, Stewart M, Mcclain D. Suppression of depleted uranium-induced neoplastic transformation of human cells by the phenyl fatty acid, phenyl acetate: chemoprevention by targeting the P21ras protein pathway. Radiat Res. 2001b;155:163–70.

    Article  PubMed  CAS  Google Scholar 

  • Miller AC, Stewart M, Brooks K, Shi L, Page N. Depleted uranium-catalyzed oxidative DNA damage: absence of significant alpha particle decay. J Inorg Biochem. 2002;91:246–52.

    Article  PubMed  CAS  Google Scholar 

  • Miller AC, Brooks K, Stewart M, Anderson B, Shi L, McClain D, et al. Genomic instability in human osteoblast cells after exposure to depleted uranium: delayed lethality and micronuclei formation. J Environ Radioact. 2003;64:247–59.

    Article  PubMed  CAS  Google Scholar 

  • Miller AC, Beltran D, Rivas R, Stewart M, Merlot RJ, Lison PB. Radiation- and depleted uranium-induced carcinogenesis studies: characterization of the carcinogenic process and development of medical countermeasures. NATO RTG-099. 2005.

  • Mirto H, Barrouillet MP, Henge-Napoli MH, Ansoborlo E, Fournier M, Cambar J. Influence of uranium (VI) speciation for the evaluation of in vitro uranium cytotoxicity on LLC-PK1 cells. Hum Exp Toxicol. 1999;18:180–7.

    Article  PubMed  CAS  Google Scholar 

  • Møller P, Knudsen LE, Loft S, Wallin H. The comet assay as a rapid test in biomonitoring occupational exposure to DNA-damaging agents and effect of confounding factors. Cancer Epidemiol Biomarkers Prev. 2000;9:1005–15.

    PubMed  Google Scholar 

  • Monleau M, De Méo M, Paquet F, Chazel V, Dumenil G, Donnadieu-Claraz M. Genotoxic and inflammatory effects of depleted uranium particles inhaled by rats. Toxicol Sci. 2006;89:287–95.

    Article  PubMed  Google Scholar 

  • Norppa H, Bonassi S, Hansteen IL, Hagmar L, Strömberg U, Rössner P, et al. Chromosomal aberrations and SCEs as biomarkers of cancer risk. Mutat Res. 2006;600:37–45.

    PubMed  CAS  Google Scholar 

  • NRC (National Research Council). Health effects of exposure to radon: BEIR VI. Washington, DC: National Academy Press; 1999.

    Google Scholar 

  • NRC (National Research Council). Review of the toxicologic and radiologic risks to military personnel from exposures to depleted uranium during and after combat. Washington, DC: The National Academies Press; 2008.

    Google Scholar 

  • Oestreicher U, Braselmann H, Stephan G. Cytogenetic analyses in peripheral lymphocytes of persons living in houses with increased levels of indoor radon concentrations. Cytogenet Genome Res. 2004;104:232–6.

    Article  PubMed  CAS  Google Scholar 

  • Olive PL. DNA damage and repair in individual cells: applications of the comet assay in radiobiology. Int J Radiat Biol. 1999;75:395–405.

    Article  PubMed  CAS  Google Scholar 

  • Pereira ER, Zenquer AO, Chamon N. Projeto Monte Alegre - Avaliação de indícios. Rio de Janeiro: Empresas Nucleares Brasileiras; 1983.

    Google Scholar 

  • Pinke D, Straume T, Gray JW. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci U S A. 1986;83:2934–8.

    Article  Google Scholar 

  • Prat O, Berenguer F, Malard V, Tavan E, Sage N, Steinmetz G, et al. Transcriptomic and proteomic responses of human renal HEK293 cells to uranium toxicity. Proteomics. 2005;5:297–306.

    Article  PubMed  CAS  Google Scholar 

  • Preston RJ, San Sebastian JR, McFee AF. The in vitro human lymphocyte assay for assessing the clastogenicity of chemical agents. Mutat Res. 1987;189:175–83.

    Article  PubMed  CAS  Google Scholar 

  • Scannell CH, Balmes JR. Pulmonary effects of firefighting. Occup Med. 1995;10:789–801.

    PubMed  CAS  Google Scholar 

  • Seiler RL. Temporal changes in water quality at a childhood leukemia cluster. Ground Water. 2004;42:446–55.

    Article  PubMed  CAS  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Scheider EL. A simple technique for quantification of low levels of DNA damage in individual cells. Exp Cell Res. 1988;75:184–91.

    Article  Google Scholar 

  • Speit G, Hartmann A. The comet assay (single-cell gel test). A sensitive genotoxicity test for the detection of DNA damage and repair. Meth Mol Biol. 1999;113:203–12.

    CAS  Google Scholar 

  • Stearns DM, Yazzie M, Bradley AS, Coryell VH, Shelley JT, Ashby A, et al. Uranyl acetate induces hprt mutations and uranium-DNA adducts in Chinese hamster ovary EM9 cells. Mutagenesis. 2005;20:417–23.

    Article  PubMed  CAS  Google Scholar 

  • Surrallés J, Xamena N, Creus A, Marcos R. The suitability of the micronucleus assay in human lymphocytes as a new biomarker of excision repair. Mutat Res. 1995;342:43–59.

    Article  PubMed  Google Scholar 

  • Taulan M, Paquet F, Maubert C, Delissen O, Demaille J, Romey MC. Renal toxicogenomic response to chronic uranyl nitrate insult in mice. Environ Health Perspect. 2004;112:1628–35.

    PubMed  CAS  Google Scholar 

  • Thiébault C, Carrière M, Milgram S, Simon A, Avoscan L, Gouget B. Uranium induces apoptosis and is genotoxic to normal rat kidney (NRK-52E) proximal cells. Toxicol Sci. 2007;98:479–87.

    Article  PubMed  CAS  Google Scholar 

  • Thierens H, Vral A, Morthier R, Aousalah B, De Ridder L. Cytogenetic monitoring of hospital workers occupationally exposed to ionizing radiation using the micronucleus centromere assay. Mutagenesis. 2000;15:245–9.

    Article  PubMed  CAS  Google Scholar 

  • Tice RR, Strauss GH. The single cell gel electrophoresis/comet assay: a potential tool for detecting radiation-induced DNA damage in humans. Stem Cells. 1995;13:207–14.

    PubMed  Google Scholar 

  • Tsai MH, Hwang JS, Chen KC, Lin YP, Hsieh WA, Chang WP. Dynamics of changes in micronucleus frequencies in subjects post cessation of chronic low-dose radiation exposure. Mutagenesis. 2001;16:251–5.

    Google Scholar 

  • UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). Report to the General Assembly Sources and effects of ionizing radiation. New York: United Nations Scientific Committee on the Effects of Atomic Radiation, United Nations; 1977.

    Google Scholar 

  • UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). Ionizing radiation: sources and biological effects. New York: United Nations Scientific Committee on the Effects of Atomic Radiation. United Nations; 1982.

    Google Scholar 

  • UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). 2006 report to the General Assembly, with scientific annexes A and B Effects of ionizing radiation, vol. 1. Vienna: United Nations; 2008.

    Google Scholar 

  • Urnovitz HB, Tuite JJ, Higashida JM, Murphy WH. RNAs in sera of Persian Gulf War veterans have segments homologous to chromosome 22q11.2. Clin Diagn Lab Immunol. 1999;6:330–3.

    PubMed  CAS  Google Scholar 

  • Department of Veterans Affairs, Veterans Health Administration, and Department of Defense, Office of the Assistant Secretary of Defense, Health Affairs. Combined Analysis of the VA and DoD Gulf War Clinical Evaluation Programs: a study of the clinical findings from systematic medical examinations of 100,339 US Gulf War Veterans, 1999. September 2002.

  • Vral A, Thierens H, De Ridder L. In vitro micronucleus-centromere assay to detect radiation-damage induced by low doses in human lymphocytes. Int J Radiat Biol. 1997;71:61–8.

    Article  PubMed  CAS  Google Scholar 

  • Wan B, Fleming JT, Schultz TW, Sayler GS. In vitro immune toxicity of depleted uranium: effects on murine macrophages, CD4þ T cells, and gene expression profiles. Environ Health Perspect. 2006;114:85–91.

    Article  PubMed  CAS  Google Scholar 

  • Wolf G, Arndt D, Kotschy-Lang N, Obe G. Chromosomal aberrations in uranium and coal miners. Int J Radiat Biol. 2004;80:147–53.

    Article  PubMed  CAS  Google Scholar 

  • Yazzie M, Gamble SL, Civitello ER, Stearns DM. Uranyl acetate causes DNA single strand breaks in vitro in the presence of ascorbate (vitamin C). Chem Res Toxicol. 2003;16:524–30.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Process 409826/206-5. R. R. Burbano has a PQ-2 fellowship (number 308256/2006-9) granted by CNPq. We would like to thank Dr. Vicente de Paula Melo for the access to his master’s thesis.

Conflicts of interest

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rommel Rodríguez Burbano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guimarães, A.C., Antunes, L.M.G., Ribeiro, H.F. et al. Cytogenetic biomonitoring of inhabitants of a large uranium mineralization area: the municipalities of Monte Alegre, Prainha, and Alenquer, in the State of Pará, Brazil. Cell Biol Toxicol 26, 403–419 (2010). https://doi.org/10.1007/s10565-010-9152-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-010-9152-8

Keywords

Navigation