Log in

Trimetallic PtTiMg Alloy Nanoparticles with High Activity for Efficient Electrocatalytic Ethanol Oxidation

  • Original Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Although nanostructures based on noble metal alloys are widely used in the anode catalysts of direct ethanol fuel cells, their commercialization remains a remarkable challenge due to their high cost and poor durability. We describe the successful synthesis of trimetallic PtTiMg alloy nanoparticles with adjustable composition using a simple one-step three-target magnetron co-sputtering method. Various physical characterization and electrochemical methods were used to investigate the structure/composition and electrochemical properties of the obtained PtTiMg alloy catalysts toward ethanol oxidation reaction (EOR). The PtTiMg alloy catalyst demonstrated excellent electrocatalytic activity and high durability when the Mg content was 2.76%, (after 3000 cycles, retained 91% of its electrochemical surface area). Furthermore, the electrochemically active surface area and peak current density of the PtTiMg alloy catalyst are 1.5 and 0.8 times higher than those of the commercial pure Pt catalyst, respectively. Furthermore, the long-term strong acid immersion test demonstrated that the PtTiMg alloy catalysts retain high electrocatalytic activity in harsh environments, demonstrating the potential application of the obtained PtTiMg alloy catalysts for EOR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akhairi MAF, Kamarudin SK (2016) Catalysts in direct ethanol fuel cell (DEFC): an overview. Int J Hydrog Energy 41:4214–4228

    Article  CAS  Google Scholar 

  2. Tran DT et al (2019) Pt nanodots monolayer modified mesoporous Cu@CuxO nanowires for improved overall water splitting reactivity. Nano Energy 59:216–228

    Article  CAS  Google Scholar 

  3. Zakir F et al (2016) Modified Nafion membranes for direct alcohol fuel cells: an overview. Renew Sustain Energy Rev 65:841–852

    Article  CAS  Google Scholar 

  4. Badwal SPS et al (2015) Direct ethanol fuel cells for transport and stationary applications—a comprehensive review. Appl Energy 145:80–103

    Article  CAS  Google Scholar 

  5. Han BX (2019) Heteropolyacid catalyzing the selective oxidation of glycerol. Acta Phys Chim Sin 35:1–7

    Article  CAS  Google Scholar 

  6. Df VDV et al (2012) Mesostructured thin films as electrocatalysts with tunable composition and surface morphology. Nat Mater 11:1051–1058

    Article  CAS  Google Scholar 

  7. Liu H et al (2017) Trimetallic PtRhNi alloy nanoassemblies as highly active electrocatalyst for ethanol electrooxidation. Nano Res 10:3324–3332

    Article  CAS  Google Scholar 

  8. Fu X et al (2020) Pt3Ag alloy wavy nanowires as highly effective electrocatalysts for ethanol oxidation reaction. Nano Res 13(5):1472–1478

    Article  CAS  Google Scholar 

  9. Sulaiman JE et al (2017) Pt–Ni octahedra as electrocatalysts for the ethanol electro-oxidation reaction. ACS Catal 7:5134–5141

    Article  CAS  Google Scholar 

  10. Liu C et al (2019) Synthesis and facile structure-adjusting of Pd–Pt nanocrystal electrocatalysts with improved activity for ethanol oxidation reaction. New J Chem 43:17954–17962

    Article  CAS  Google Scholar 

  11. Huang XY et al (2019) l-proline assisted solvothermal preparation of Cu-rich rhombic dodecahedral PtCu nanoframes as advanced electrocatalysts for oxygen reduction and hydrogen evolution reactions. Electrochim Acta 299:89–97

    Article  CAS  Google Scholar 

  12. Ma J et al (2013) Correlation between surface chemical composition with catalytic activity and selectivity of organic-solvent synthesized Pt-Ti nanoparticles. J Mater Chem A 1(31):8798–8804

    Article  CAS  Google Scholar 

  13. 刘广权等 (2021) 高耐久活性二元合金PtTi薄膜电催化剂[J]. 燃料化学学报 49(07):978–985

  14. Guangquan L et al (2022) High durability of porous Pt films deposited via magnetron sputtering. J Wuhan Univ Technol (Materials Science). https://doi.org/10.1007/s11595-022-2300-9

  15. Ma JW et al (2013) Correlation between surface chemical composition with catalytic activity and selectivity of organic-solvent synthesized Pt–Ti nanoparticles. J Mater Chem A 1:8798–8804

    Article  CAS  Google Scholar 

  16. Abe H et al (2008) Electrocatalytic performance of fuel oxidation by Pt3Ti nanoparticles. J Am Chem Soc 130(16):5452–5458

    Article  CAS  PubMed  Google Scholar 

  17. Wang XG et al (2016) Highly active carbon supported ternary PdSnPtx (x=0.1-0.7) catalysts for ethanol electro-oxidation in alkaline and acid media. J Colloid Interface Sci 468:200–210

    Article  CAS  PubMed  Google Scholar 

  18. Antolini E (2017) Alloy vs. intermetallic compounds: effect of the ordering on the electrocatalytic activity for oxygen reduction and the stability of low temperature fuel cell catalysts. Appl Catal B Environ 217:201–213

    Article  CAS  Google Scholar 

  19. Ivanova NA et al (2019) Activity and durability of electrocatalytic layers with low platinum loading prepared by magnetron sputtering onto gas diffusion electrodes. Int J Hydrog Energy 44(56):29529–29536

    Article  CAS  Google Scholar 

  20. Alexeeva OK, Fateev VN (2016) Application of the magnetron sputtering for nanostructured electrocatalysts synthesis. Int J Hydrog Energy 41:3373–3386

    Article  CAS  Google Scholar 

  21. Ding E et al (2008) Preparation and characterization of carbon-supported PtTi alloy electrocatalysts. J Power Sources 175:794–799

    Article  CAS  Google Scholar 

  22. Tran LT et al (2018) Preparation and electrocatalytic characteristics of the Pt-based anode catalysts for ethanol oxidation in acid and alkaline media. Int J Hydrog Energy 43:20563–20572

    Article  CAS  Google Scholar 

  23. Kongkanand A, Mathias MF (2016) The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. J Phys Chem Lett 7:1127–1137

    Article  CAS  PubMed  Google Scholar 

  24. Liu Y et al (2018) Electro-oxidation of ethanol using Pt3Sn alloy nanoparticles. ACS Catal 8:10931–10937

    Article  CAS  Google Scholar 

  25. Nie Y et al (2015) Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem Soc Rev 44:2168–2201

    Article  CAS  PubMed  Google Scholar 

  26. Hien HV et al (2018) Hierarchical porous framework of ultrasmall PtPd alloy-integrated graphene as active and stable catalyst for ethanol oxidation. Compos B Eng 143:96–104

    Article  CAS  Google Scholar 

  27. Tran DT et al (2018) Emerging core-shell nanostructured catalysts of transition metal encapsulated by two-dimensional carbon materials for electrochemical applications. Nano Today 22:100–131

    Article  CAS  Google Scholar 

  28. Yang GX et al (2017) Influence of ∗OH adsorbates on the potentiodynamics of the CO2 generation during the electro-oxidation of ethanol. J Catal 353:335–348

    Article  CAS  Google Scholar 

  29. Hirano S et al (1997) High performance proton exchange membrane fuel cells with sputter-deposited Pt layer electrodes. Electrochim Acta 42:1587–1593

    Article  CAS  Google Scholar 

  30. Zakil FA et al (2016) Modified nafion membranes for direct alcohol fuel cells: an overview. Renew Sustain Energy Rev 65:841–852

    Article  CAS  Google Scholar 

  31. Song P et al (2017) Networked Pt–Sn nanowires as efficient catalysts for alcohol electrooxidation. J Mater Chem A 5:24626–24630

    Article  CAS  Google Scholar 

  32. An L, Zhao TS (2017) Transport phenomena in alkaline direct ethanol fuel cells for sustainable energy production. J Power Sources 341:199–211

    Article  CAS  Google Scholar 

  33. Delpeuch AB et al (2016) Catalysts in direct ethanol fuel cell (DEFC): an overview. Appl Catal B-Environ 181:672–680

    CAS  Google Scholar 

  34. Valerio Neto ES et al (2018) Pt and Pt–Rh nanowires supported on carbon and SnO2: Sb nanoparticles for ethanol electrochemical oxidation in acidic media. Int J Hydrog Energ 43:178–188

    Article  CAS  Google Scholar 

  35. Rizo R et al (2017) On the design of Pt-Sn efficient catalyst for carbon monoxide and ethanol oxidation in acid and alkaline media. Appl Catal B-Environ 200:246–254

    Article  CAS  Google Scholar 

  36. Zhao Y et al (2017) Composition–structure–activity correlation of platinum-ruthenium nanoalloy catalysts for ethanol oxidation reaction. J Phys Chem C 121:17077–17087

    Article  CAS  Google Scholar 

  37. Rizo R et al (2018) Pt-richcore/Sn-Richsubsurface/Ptskin nanocubes as highly active and stable electrocatalysts for the ethanol oxidation reaction. J Am Chem Soc 140:3791–3797

    Article  CAS  PubMed  Google Scholar 

  38. Yuan W et al (2016) Controllably self-assembled graphene-supported Au@Pt bimetallic nanodendrites as superior electrocatalysts for methanol oxidation in direct methanol fuel cells. J Mater Chem A 4:7352–7364

    Article  CAS  Google Scholar 

  39. Su S et al (2016) Uniform Au@Pt core–shell nanodendrites supported on molybdenum disulfide nanosheets for the methanol oxidation reaction. Nanoscale 8:602–608

    Article  CAS  PubMed  Google Scholar 

  40. Song Z et al (2018) Origin of achieving the enhanced activity and stability of Pt electrocatalysts with strong metal-support interactions via atomic layer deposition. Nano Energy 53:716–725

    Article  CAS  Google Scholar 

  41. Thanh TD et al (2018) Recent advances in two-dimensional transition metal dichalcogenides-graphene heterostructured materials for electrochemical applications. Prog Mater Sci 96:51–85

    Article  CAS  Google Scholar 

  42. Zeng Y et al (2017) Nanostructured ultrathin catalyst layer based on open-walled PtCo bimetallic nanotube arrays for proton exchange membrane fuel cells. Nano Energy 34:344–355

    Article  CAS  Google Scholar 

  43. Tao L et al (2018) Interface engineering of Pt and CeO2 nanorods with unique interaction for methanol oxidation. Nano Energy 53:604–612

    Article  CAS  Google Scholar 

  44. Taylor E et al (2013) Synthesis of Pt–Cu nanodendrites through controlled reduction kinetics for enhanced methanol electro-oxidation. Chemsuschem 6:1863–1867

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Wu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Peng, L., Fan, L. et al. Trimetallic PtTiMg Alloy Nanoparticles with High Activity for Efficient Electrocatalytic Ethanol Oxidation. Catal Surv Asia 26, 183–192 (2022). https://doi.org/10.1007/s10563-022-09355-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-022-09355-x

Keywords

Navigation