Log in

The Comparative Study of Reaction Mechanisms and Catalytic Performances of Cu–SSZ-13 and Fe–SSZ-13 for the NH3-SCR Reaction

  • Original Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

The catalytic performances and mechanism differences of model catalysts Cu–SSZ-13 and Fe–SSZ-13 with similar metal content and Si/Al ratio were compared. In the NH3-SCR reaction, Cu–SSZ-13 had a good NO conversion at low temperature, broad active temperature windows and better hydrothermal stability. Fe–SSZ-13 showed better high-temperature NO conversion rate and better resistance to sulfur poisoning, but poorer low-temperature NH3-SCR activity. NH3-TPD verified the content difference of L-NH3 and B-NH3 of Cu- and Fe–SSZ-13. UV–Vis DRS, EPR, H2-TPR indicated the active species of Cu- and Fe–SSZ-13. Results showed that Cu–SSZ-13 only had one type active species of Cu2+, Fe–SSZ-13 had Fe3+ species that acted as active centers at low temperature and reactivity oligomeric Fe species at high temperature. The diffuse reflection infrared Fourier transform spectrum (DRIFTS) results showed that the reactions of Cu–SSZ-13 and Fe–SSZ-13 at low temperature both followed the Eley–Rideal (E–R) mechanism and the Langmuir–Hinshelwood (L–H) mechanism. Cu–SSZ-13 could perform the catalytic process well under both mechanisms, but when Fe–SSZ-13 followed the E–R mechanism, there were many B-NH3 species, which was not conducive to the reaction. When following the L–H mechanism, the speed of NO3 participating in the reaction was slow due to ammonia inhibition, resulting in poor low-temperature activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang S, Pang L, Chen Z, Ming S, Dong Y, Liu Q, Liu P, Cai W, Liu T (2020) Cu/SSZ-13 and Cu/SAPO-34 catalysts for deNOx in diesel exhaust: current status, challenges, and future perspectives. Appl Catal A 607:117855

    Article  CAS  Google Scholar 

  2. Gao F, Kwak JH, Szanyi J, Peden CHF (2013) Current understanding of Cu-exchanged chabazite molecular sieves for use as commercial diesel engine DeNOx catalysts. Top Catal 56:1441–1459

    Article  CAS  Google Scholar 

  3. Ren L, Zhang Y, Zeng S, Zhu L, Sun Q, Zhang H, Yang C, Meng X, Yang X, **ao F (2012) Design and synthesis of a catalytically active Cu–SSZ-13 zeolite from a copper–amine complex template. Chin J Catal 33:92–105

    Article  CAS  Google Scholar 

  4. Gao F, Washton NM, Wang Y, Kollár M, Szanyi J, Peden CHF (2015) Effects of Si/Al ratio on Cu/SSZ-13 NH3-SCR catalysts: implications for the active Cu species and the roles of Brønsted acidity. J Catal 331:25–38

    Article  CAS  Google Scholar 

  5. **e L, Liu F, Ren L, Shi X, **ao F, He H (2014) Excellent performance of one-pot synthesized Cu–SSZ-13 catalyst for the selective catalytic reduction of NOx with NH3. Environ Sci Technol 48:566–572

    Article  CAS  PubMed  Google Scholar 

  6. Yin C, Cheng P, Li X, Yang RT (2016) Selective catalytic reduction of nitric oxide with ammonia over high-activity Fe/SSZ-13 and Fe/one-pot-synthesized Cu–SSZ-13 catalysts. Catal Sci Technol 6:7561–7568

    Article  CAS  Google Scholar 

  7. Mesilov V, **ao Y, Dahlin S, Bergman SL, Pettersson LJ, Bernasek SL (2021) First-principles calculations of condition-dependent Cu/Fe speciation in sulfur-poisoned Cu- and Fe–SSZ-13 catalysts. J Phys Chem C 125:4632–4645

    Article  CAS  Google Scholar 

  8. Qi G, Yang RT (2005) Ultra-active Fe/ZSM-5 catalyst for selective catalytic reduction of nitric oxide with ammonia. Appl Catal B 60:13–22

    Article  CAS  Google Scholar 

  9. Ma L, Cheng Y, Cavataio G, McCabe RW, Fu L, Li J (2013) Characterization of commercial Cu–SSZ-13 and Cu–SAPO-34 catalysts with hydrothermal treatment for NH3-SCR of NOx in diesel exhaust. Chem Eng J 225:323–330

    Article  CAS  Google Scholar 

  10. Zhang T, Chang H, You Y, Shi C, Li J (2018) Excellent activity and selectivity of one-pot synthesized Cu–SSZ-13 catalyst in the selective catalytic oxidation of ammonia to nitrogen. Environ Sci Technol 52:4802–4808

    Article  CAS  PubMed  Google Scholar 

  11. Ma L, Cheng Y, Cavataio G, McCabe RW, Fu L, Li J (2014) In situ DRIFTS and temperature-programmed technology study on NH3-SCR of NO over Cu–SSZ-13 and Cu–SAPO-34 catalysts. Appl Catal B 156–157:428–437

    Article  CAS  Google Scholar 

  12. Su W, Chang H, Peng Y, Zhang C, Wi J (2015) Reaction pathway investigation on the selective catalytic reduction of NO with NH3 over Cu/SSZ-13 at low temperatures. Environ Sci Technol 49:467–473

    Article  CAS  PubMed  Google Scholar 

  13. Zhang T, Qiu F, Chang H, Li X, Li J (2016) Identification of active sites and reaction mechanism on low-temperature SCR activity over Cu–SSZ-13 catalysts prepared by different methods. Catal Sci Technol 6:6294–6304

    Article  CAS  Google Scholar 

  14. Crandell DW, Zhu H, Yang X, Hochmuth J, Baik M (2017) The mechanism of selective catalytic reduction of NOx on Cu–SSZ-13-a computational study. Dalton Trans 46:369–377

    Article  CAS  PubMed  Google Scholar 

  15. Zhu N, Shan Y, Shan W, Sun Y, Liu K, Zhang Y, He H (2020) Distinct NO2 effects on Cu–SSZ-13 and Cu–SSZ-39 in the selective catalytic reduction of NOx with NH3. Environ Sci Technol 54:15499–15506

    Article  CAS  PubMed  Google Scholar 

  16. Gao F, Kollár M, Kukkadapu RK, Washton NM, Wang Y, Szanyi J, Peden CHF (2014) Fe/SSZ-13 as an NH3-SCR catalyst: a reaction kinetics and FTIR/Mössbauer spectroscopic study. Appl Catal B 64:407–419

    Google Scholar 

  17. Gao F, Zheng Y, Kukkadapu RK, Wang Y, Walter ED, Schwenzer B, Szanyi J, Peden CHF (2016) Iron loading effects in Fe/SSZ-13 NH3-SCR catalysts: nature of the Fe ions and structure–function relationships. ACS Catal 6:2939–2954

    Article  CAS  Google Scholar 

  18. Kovarik L, Washton NM, Kukkadapu R, Devaraj A, Wang A, Wang Y, Szanyi J, Peden CHF, Gao F (2017) Transformation of active sites in Fe/SSZ-13 SCR catalysts during hydrothermal aging: a spectroscopic, microscopic, and kinetics study. ACS Catal 7:2458–2470

    Article  CAS  Google Scholar 

  19. Zhang T, Qiu Y, Liu G, Chen J, Peng Y, Liu B, Li J (2020) Nature of active Fe species and reaction mechanism over high-efficiency Fe/CHA catalysts in catalytic decomposition of N2O. J Catal 392:322–335

    Article  CAS  Google Scholar 

  20. Gao F, Wang Y, Kollár M, Washton NM, Szanyi J, Peden CHF (2015) A comparative kinetics study between Cu/SSZ-13 and Fe/SSZ-13 SCR catalysts. Catal Today 258:347–358

    Article  CAS  Google Scholar 

  21. Zhang S, Chen J, Meng Y, Pang L, Guo Y, Luo Z, Fang Y, Dong Y, Cai W, Li T (2022) Insight into solid-state ion-exchanged Cu-based zeolite (SSZ-13, SAPO-18, and SAPO-34) catalysts for the NH3-SCR reaction: the promoting role of NH4-form zeolite substrates. Appl Surf Sci 571:151328

    Article  CAS  Google Scholar 

  22. Wang D, Zhang L, Li J, Kamasamudram K, Epling WS (2014) NH3-SCR over Cu/SAPO-34—zeolite acidity and Cu structure changes as a function of Cu loading. Catal Today 231:64–74

    Article  CAS  Google Scholar 

  23. Martins GVA, Berlier G, Bisio C, Coluccia S, Pastore HO, Marchese L (2008) Quantification of Brønsted acid sites in microporous catalysts by a combined FTIR and NH3-TPD study. J Phys Chem C 112:7193–7200

    Article  CAS  Google Scholar 

  24. Chen Z, Liu Q, Guo L, Zhang S, Pang L, Guo Y, Li T (2021) The promoting mechanism of in situ Zr do** on the hydrothermal stability of Fe–SSZ-13 catalyst for NH3-SCR reaction. Appl Catal B 286:119816

    Article  CAS  Google Scholar 

  25. Fan C, Chen Z, Pang L, Ming S, Dong C, Albert KB, Liu P, Wang J, Zhu D, Chen H, Li T (2018) Steam and alkali resistant Cu–SSZ-13 catalyst for the selective catalytic reduction of NOx in diesel exhaust. Chem Eng J 334:344–354

    Article  CAS  Google Scholar 

  26. Chen Z, Fan C, Pang L, Ming S, Guo W, Liu P, Chen H, Li T (2018) One-pot synthesis of high-performance Cu–SAPO-18 catalyst for NO reduction by NH3-SCR: influence of silicon content on the catalytic properties of Cu–SAPO-18. Chem Eng J 348:608–617

    Article  CAS  Google Scholar 

  27. Xu R, Wang Z, Liu N, Dai C, Chen JZ (2020) Biaohua, Understanding Zn functions on hydrothermal stability in a one-pot-synthesized Cu and Zn-SSZ-13 catalyst for NH3 selective catalytic reduction. ACS Catal 10:6197–6212

    Article  CAS  Google Scholar 

  28. **a Y, Zhan WC, Guo Y, Guo YL, Lu GZ (2016) Fe–Beta zeolite for selective catalytic reduction of NOx with NH3: influence of Fe content. Chin J Catal 37:2069–2078

    Article  CAS  Google Scholar 

  29. Wang A, Wang Y, Walter ED, Kukkadapu RK, Guo Y, Lu G, Weber RS, Wang Y, Peden CHF, Gao F (2018) Catalytic N2O decomposition and reduction by NH3 over Fe/Beta and Fe/SSZ-13 catalysts. J Catal 358:199–210

    Article  CAS  Google Scholar 

  30. Ma L, Chang H, Yang S, Chen L, Fu L, Li J (2012) Relations between iron sites and performance of Fe/HBEA catalysts prepared by two different methods for NH3-SCR. Chem Eng J 209:652–660

    Article  CAS  Google Scholar 

  31. Mauvezin M, Delahay G, Coq B, Kieger S, Jumas JC, Olivier-Fourcade J (2001) Identification of iron species in Fe-BEA: influence of the exchange level. J Phys Chem C 105:928–935

    Article  CAS  Google Scholar 

  32. Liu Q, Bian C, ** Y, Pang L, Chen Z, Li T (2020) Influence of calcination temperature on the evolution of Fe species over Fe–SSZ-13 catalyst for the NH3-SCR of NO. Catal Today. https://doi.org/10.1016/j.cattod.2020.06.085

    Article  PubMed  PubMed Central  Google Scholar 

  33. Brandenberger S, Kröcher O, Tissler A, Althoff R (2010) The determination of the activities of different iron species in Fe-ZSM-5 for SCR of NO by NH3. Appl Catal B 95:348–357

    Article  CAS  Google Scholar 

  34. Lezcano-Gonzalez I, Deka U, Arstad B, Van Yperen-De Deyne A, Hemelsoet K, Waroquier M, Van Speybroeck V, Weckhuysen BM, Beale AM (2014) Determining the storage, availability and reactivity of NH3 within Cu–chabazite-based ammonia selective catalytic reduction systems. Phys Chem Chem Phys 16:1639–1650

    Article  CAS  PubMed  Google Scholar 

  35. Valyont J, Hall WK (1993) Effects of reduction and reoxidation on the infrared spectra from Cu-Y and Cu-ZSM-5. J Phys Chem C 97:7054–7060

    Article  Google Scholar 

  36. Chen H, Wei Z, Kollar M, Gao F, Wang Y, Szanyi J, Peden CHF (2015) A comparative study of N2O formation during the selective catalytic reduction of NOx with NH3 on zeolite supported Cu catalysts. J Catal 329:490–498

    Article  CAS  Google Scholar 

  37. Han S, Cheng J, Ye Q, Cheng S, Kang T, Dai H (2019) Ce do** to Cu–SAPO-18: Enhanced catalytic performance for the NH3-SCR of NO in simulated diesel exhaust. Microporous Mesoporous Mater 276:133–146

    Article  CAS  Google Scholar 

  38. Fan J, Ning P, Wang Y, Song Z, Liu X, Wang H, Wang J, Wang L, Zhang Q (2019) Significant promoting effect of Ce or La on the hydrothermal stability of Cu–SAPO-34 catalyst for NH3-SCR reaction. Chem Eng J 369:908–919

    Article  CAS  Google Scholar 

  39. Shi J, Zhang Y, Zhu Y, Chen M, Zhang Z, Shangguan W (2019) Efficient Fe-ZSM-5 catalyst with wide active temperature window for NH3 selective catalytic reduction of NO: synergistic effect of isolated Fe3+ and Fe2O3. J Catal 378:17–27

    Article  CAS  Google Scholar 

  40. Zhu H, Kwak JH, Peden CHF, Szanyi J (2013) In situ DRIFTS–MS studies on the oxidation of adsorbed NH3 by NOx over a Cu–SSZ-13 zeolite. Catal Today 205:16–23

    Article  CAS  Google Scholar 

  41. Lin Q, Xu S, Liu S, Liu J, Wang Y, Chen D, Xu H, Chen Y (2019) Novel Cu-based CHA/AFI hybrid crystal structure catalysts synthesized for NH3-SCR. Ind Eng Chem Res 58:18046–18054

    Article  CAS  Google Scholar 

  42. Chen P, Rauch D, Weide P, Schönebaum S, Simons T, Muhler M, Moos R, Simon U (2016) The effect of Cu and Fe cations on NH3-supported proton transport in DeNOx-SCR zeolite catalysts. Catal Sci Technol 6:3362–3366

    Article  CAS  Google Scholar 

  43. Chen L, Wang X, Cong Q, Ma H, Li S, Li W (2019) Design of a hierarchical Fe-ZSM-5@CeO2 catalyst and the enhanced performances for the selective catalytic reduction of NO with NH3. Chem Eng J 369:957–967

    Article  CAS  Google Scholar 

  44. Zhang Y, Peng Y, Li K, Liu S, Chen J, Li J, Gao F, Peden CHF (2019) Using transient FTIR spectroscopy to probe active sites and reaction intermediates for selective catalytic reduction of NO on Cu/SSZ-13 catalysts. ACS Catal 9:6137–6145

    Article  CAS  Google Scholar 

  45. Zhang S, Ming S, Guo L, Bian C, Meng Y, Liu Q, Dong Y, Bi J, Li D, Wu Q, Qin K, Chen Z, Pang L, Cai W, Li T (2021) Controlled synthesis of Cu-based SAPO-18/34 intergrowth zeolites for selective catalytic reduction of NOx by ammonia. J Hazard Mater 414:125543

    Article  CAS  PubMed  Google Scholar 

  46. Paolucci C, Verma AA, Bates SA, Kispersky VF, Miller JT, Gounder R, Delgass WN, Ribeiro FH, Schneider WF (2014) Isolation of the copper redox steps in the standard selective catalytic reduction on Cu–SSZ-13. Angew Chem Int Ed 53:11828–11833

    Article  CAS  Google Scholar 

  47. Wang Y, Li G, Zhang S, Zhang X, Zhang X, Hao Z (2020) Promoting effect of Ce and Mn addition on Cu–SSZ-39 zeolites for NH3-SCR reaction: activity, hydrothermal stability, and mechanism study. Chem Eng J 393:124782

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work acknowledges financial support from the National Natural Science Foundation of China (21473064) and the Analytical and Testing Center of Huazhong University of Science and Technology for the use of its facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3956 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, K., Guo, L., Ming, S. et al. The Comparative Study of Reaction Mechanisms and Catalytic Performances of Cu–SSZ-13 and Fe–SSZ-13 for the NH3-SCR Reaction. Catal Surv Asia 26, 115–128 (2022). https://doi.org/10.1007/s10563-022-09353-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-022-09353-z

Keywords

Navigation