Log in

Hierarchical Co3O4/TSCN Nanocapsules as Green Photocatalyst for Oxidation of Alcohols

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Hierarchical Co3O4/triple-shelled carbon nitride (Co3O4/TSCN) composite nanocapsules were designed via a multi-step procedure in a controlled manner as a solar-light-driven photocatalyst based Z-scheme system for selective aerobic photooxidation of alcohols (primary and secondary aliphatic and benzylic) to corresponding aldehydes/ or ketones in green media. The structure of the as-prepared photocatalyst was characterized by a series of measurement techniques including FT-IR, XRD, BET, TEM, FE-SEM, EDX, EDX-map**, TGA, UV–vis DRS, and ICP-OES. The hierarchical Co3O4/TSCN composite nanocapsules demonstrated superior photocatalytic activity in selective aerobic oxidation of alcohols under solar light irradiation in comparison to pure TSCN and Co3O4 NPs. The shell number of the composite nanocapsules and the formation of the hierarchical Co3O4/TSCN Z-scheme photocatalyst can significantly affect the photocatalytic activity. The results indicate the efficient electron transfer, relatively high specific surface area, high donor density, and low band gap as well as the coexistence of micro-, meso- and macropores and also nano-sized crystalline structure (from 1.2 to 95 nm) in heterojunction composite. This novel photocatalytic system kept relatively high catalytic activity after five recycle runs under the same reaction conditions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Fig. 10
Scheme 3
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  1. Moriyama K, Takemura M, Togo H (2014) Selective oxidation of alcohols with alkali metal bromides as bromide catalysts: experimental study of the reaction mechanism. J Org Chem 79(13):6094–6104. https://doi.org/10.1021/jo5008064

    Article  CAS  PubMed  Google Scholar 

  2. Dijksman A, Marino-González A, Mairata i Payeras A et al (2001) Efficient and selective aerobic oxidation of alcohols into aldehydes and ketones using ruthenium/TEMPO as the catalytic system. J Am Chem Soc 123(28):6826–33. https://doi.org/10.1021/ja0103804

    Article  CAS  PubMed  Google Scholar 

  3. Punniyamurthy T, Velusamy S, Iqbal J (2005) Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen. Chem Rev 105(6):2329–2364. https://doi.org/10.1021/cr050523v

    Article  CAS  PubMed  Google Scholar 

  4. Le Bras J, Muzart J (2020) The reims journey towards discovery and understanding of Pd-catalyzed oxidations. Catalysts 10(1):111. https://doi.org/10.3390/catal10010111

    Article  CAS  Google Scholar 

  5. Shaabani A, Lee DG (2001) Solvent free permanganate oxidations. Tetrahedron Lett 42(34):5833–5836. https://doi.org/10.1016/S0040-4039(01)01129-7

    Article  CAS  Google Scholar 

  6. Asadolah K, Heravi MM, Hekmatshoar R et al (2007) Bis (trimethylsilyl) chromate catalyzed oxidations of alcohols to aldehydes and ketones with periodic acid. Molecules 12(5):958–964. https://doi.org/10.3390/12050958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Muzart J (2020) Personal observations on the critical and unusual role of palladium environment on reaction pathways. Adv Chem Res 2(1):1–5. https://doi.org/10.21926/acr.2001003

    Article  Google Scholar 

  8. Perales-Rondon JV, Herrero E, Solla-Gullón J et al (2017) Oxygen crossover effect on palladium and platinum based electrocatalysts during formic acid oxidation studied by scanning electrochemical microscopy. J Electroanal Chem 15(793):218–225. https://doi.org/10.1016/j.jelechem.2016.12.049

    Article  CAS  Google Scholar 

  9. Hu J, Zhu Y, Gao H et al (2022) Rapid catalysis for aerobic oxidation of alcohols based on nitroxyl-radical-free copper (II) under ambient conditions. Ind Eng Chem Res 61(36):13408–13415. https://doi.org/10.1021/acs.iecr.2c02413

    Article  CAS  Google Scholar 

  10. Kasap H, Caputo CA, Martindale BC et al (2016) Solar-driven reduction of aqueous protons coupled to selective alcohol oxidation with a carbon nitride-molecular Ni catalyst system. J Am Chem Soc 138(29):9183–9192. https://doi.org/10.1021/jacs.6b04325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Meng S, Ye X, Ning X et al (2016) Selective oxidation of aromatic alcohols to aromatic aldehydes by BN/metal sulfide with enhanced photocatalytic activity. Appl Catal B-Environ 1(182):356–368. https://doi.org/10.1016/j.apcatb.2015.09.030

    Article  CAS  Google Scholar 

  12. Zhao G, Busser GW, Froese C et al (2019) Anaerobic alcohol conversion to carbonyl compounds over nanoscaled Rh-doped SrTiO3 under visible light. J Phys Chem Lett 10(9):2075–2080. https://doi.org/10.1021/acs.jpclett.9b00621

    Article  CAS  PubMed  Google Scholar 

  13. Yan P, Wang R, Wu S et al (2008) Photo oxidation of alcohols in water under solar light. Catal Commun 9(3):406–408. https://doi.org/10.1016/j.catcom.2007.07.033

    Article  CAS  Google Scholar 

  14. Zhang R, Liu Y, Wang Z et al (2019) Selective photocatalytic conversion of alcohol to aldehydes by singlet oxygen over Bi-based metal-organic frameworks under UV-vis light irradiation. Appl Catal B-Environ 5(254):463–470. https://doi.org/10.1016/j.apcatb.2019.05.024

    Article  CAS  Google Scholar 

  15. Ramirez-Barria CS, Isaacs M, Parlett C et al (2020) Ru nanoparticles supported on N-doped reduced graphene oxide as valuable catalyst for the selective aerobic oxidation of benzyl alcohol. Catal Today 1(357):8–14. https://doi.org/10.1016/j.cattod.2019.05.057

    Article  CAS  Google Scholar 

  16. Ding J, Xu W, Wan H et al (2018) Nitrogen vacancy engineered graphitic C3N4-based polymers for photocatalytic oxidation of aromatic alcohols to aldehydes. Appl Catal B-Environ 1(221):626–634. https://doi.org/10.1016/j.apcatb.2017.09.048

    Article  CAS  Google Scholar 

  17. Liang S, Wen L, Lin S et al (2014) Monolayer HNb3O8 for selective photocatalytic oxidation of benzylic alcohols with visible light response. Angew Chem Int Ed 53(11):2951–2955. https://doi.org/10.1002/anie.201311280

    Article  CAS  Google Scholar 

  18. Fu Y, Sun L, Yang H et al (2016) Visible-light-induced aerobic photocatalytic oxidation of aromatic alcohols to aldehydes over Ni-doped NH2-MIL-125 (Ti). Appl Catal B-Environ 15(187):212–217. https://doi.org/10.1016/j.apcatb.2016.01.038

    Article  CAS  Google Scholar 

  19. Yang Z, Xu X, Liang X et al (2016) MIL-53 (Fe)-graphene nanocomposites: efficient visible-light photocatalysts for the selective oxidation of alcohols. Appl Catal B-Environ 5(198):112–123. https://doi.org/10.1016/j.apcatb.2016.05.041

    Article  CAS  Google Scholar 

  20. Yang X, Zhao H, Feng J et al (2017) Visible-light-driven selective oxidation of alcohols using a dye-sensitized TiO2-polyoxometalate catalyst. J Catal 1(351):59–66. https://doi.org/10.1016/j.jcat.2017.03.017

    Article  CAS  Google Scholar 

  21. Liu J, Zou S, Lu L et al (2017) Room temperature selective oxidation of benzyl alcohol under base-free aqueous conditions on Pt/TiO2. Catal Commun 1(99):6–9. https://doi.org/10.1016/j.catcom.2017.05.015

    Article  CAS  Google Scholar 

  22. Li H, Cao L, Yang C et al (2017) Selective oxidation of benzyl alcohols to benzoic acid catalyzed by eco-friendly cobalt thioporphyrazine catalyst supported on silica-coated magnetic nanospheres. J Environ Sci 1(60):84–90. https://doi.org/10.1016/j.jes.2017.05.044

    Article  CAS  Google Scholar 

  23. Li S, Cai J, Wu X et al (2018) TiO2@ Pt@ CeO2 nanocomposite as a bifunctional catalyst for enhancing photo-reduction of Cr(VI) and photo-oxidation of benzyl alcohol. J Hazard Mater 15(346):52–61. https://doi.org/10.1016/j.jhazmat.2017.12.001

    Article  CAS  Google Scholar 

  24. Zhang L, Jiang D, Irfan RM et al (2019) Highly efficient and selective photocatalytic dehydrogenation of benzyl alcohol for simultaneous hydrogen and benzaldehyde production over Ni-decorated Zn0.5Cd0.5S solid solution. J Energy Chem 1(30):71–7. https://doi.org/10.1016/j.jechem.2018.03.014

    Article  Google Scholar 

  25. Zheng P, Liu J, Zhang X et al (2022) Facile synthesis of a nano titanium catalyst and its performance in selective oxidation of aromatic and pyridinic alcohols under visible light. React Chem Eng 7(10):2141–2151. https://doi.org/10.1039/D2RE00180B

    Article  CAS  Google Scholar 

  26. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B-Environ 49(1):1–4. https://doi.org/10.1016/j.apcatb.2003.11.010

    Article  CAS  Google Scholar 

  27. Park JH, Kim S, Bard AJ (2006) Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett 6(1):24–28. https://doi.org/10.1021/nl051807y

    Article  CAS  PubMed  Google Scholar 

  28. Jang ES, Won JH, Hwang SJ et al (2006) Fine tuning of the face orientation of ZnO crystals to optimize their photocatalytic activity. Adv Mater 18(24):3309–3312. https://doi.org/10.1002/adma.200601455

    Article  CAS  Google Scholar 

  29. Yu L, Lin Y, Li D (2017) Visible-light-induced aerobic oxidation of alcohols in a green catalytic system of carbonate-like species doped TiO2. Appl Catal B-Environ 5(216):88–94. https://doi.org/10.1016/j.apcatb.2017.05.066

    Article  CAS  Google Scholar 

  30. Meng A, Zhang L, Cheng B et al (2019) Dual cocatalysts in TiO2 photocatalysis. Adv Mater 31(30):1807660. https://doi.org/10.1002/adma.201807660

    Article  CAS  Google Scholar 

  31. Wang X, Maeda K, Thomas A et al (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8(1):76–80. https://doi.org/10.1038/nmat2317

    Article  CAS  PubMed  Google Scholar 

  32. Ong WJ, Tan LL, Ng YH et al (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116(12):7159–7329. https://doi.org/10.1021/acs.chemrev.6b00075

    Article  CAS  PubMed  Google Scholar 

  33. Chen X, Jun YS, Takanabe K et al (2009) Ordered mesoporous SBA-15 type graphitic carbon nitride: a semiconductor host structure for photocatalytic hydrogen evolution with visible light. Chem Mater 21(18):4093–4095. https://doi.org/10.1021/cm902130z

    Article  CAS  Google Scholar 

  34. Liu J, Wang H, Antonietti M (2016) Graphitic carbon nitride “reloaded”: emerging applications beyond (photo) catalysis. Chem Soc Rev 45(8):2308–26. https://doi.org/10.1039/C5CS00767D

    Article  CAS  PubMed  Google Scholar 

  35. Wang B, Wang H, Zhong X et al (2016) A highly sensitive electrochemiluminescence biosensor for the detection of organophosphate pesticides based on cyclodextrin functionalized graphitic carbon nitride and enzyme inhibition. Chem Commun 52(28):5049–5052. https://doi.org/10.1039/C5CC10491B

    Article  CAS  Google Scholar 

  36. Niu P, Liu G, Cheng HM (2012) Nitrogen vacancy-promoted photocatalytic activity of graphitic carbon nitride. J Phys Chem C 116(20):11013–11018. https://doi.org/10.1021/jp301026y

    Article  CAS  Google Scholar 

  37. Dong F, Wu L, Sun Y et al (2011) Efficient synthesis of polymeric gC 3 N 4 layered materials as novel efficient visible light driven photocatalysts. J Mater Chem 21(39):15171–15174. https://doi.org/10.1039/C1JM12844B

    Article  CAS  Google Scholar 

  38. Zhang G, Zhang J, Zhang M et al (2012) Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J Mater Chem 22(16):8083–8091. https://doi.org/10.1039/C2JM00097K

    Article  CAS  Google Scholar 

  39. Yan SC, Li ZS, Zou ZG (2009) Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25(17):10397–10401. https://doi.org/10.1021/la900923z

    Article  CAS  PubMed  Google Scholar 

  40. Zeng B, Zhang L, Wan X et al (2015) Fabrication of α-Fe2O3/g-C3N4 composites for cataluminescence sensing of H2S. Sens Actuator B Chem 1(211):370–376. https://doi.org/10.1016/j.snb.2015.01.094

    Article  CAS  Google Scholar 

  41. Cao SW, Liu XF, Yuan YP et al (2014) Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts. Appl Catal B-Environ 5(147):940–946. https://doi.org/10.1016/j.apcatb.2013.10.029

    Article  CAS  Google Scholar 

  42. Chen J, Shen S, Guo P et al (2014) In-situ reduction synthesis of nano-sized Cu2O particles modifying g-C3N4 for enhanced photocatalytic hydrogen production. Appl Catal B-Environ 25(152):335–341. https://doi.org/10.1016/j.apcatb.2014.01.047

    Article  CAS  Google Scholar 

  43. Huang L, Xu H, Li Y et al (2013) Visible-light-induced WO3/gC3N4 composites with enhanced photocatalytic activity. Dalton Trans 42(24):8606–8616. https://doi.org/10.1039/C3DT00115F

    Article  CAS  PubMed  Google Scholar 

  44. Sun JX, Yuan YP, Qiu LG et al (2012) Fabrication of composite photocatalyst gC3N4-ZnO and enhancement of photocatalytic activity under visible light. Dalton Trans 41(22):6756–6763. https://doi.org/10.1039/C2DT12474B

    Article  CAS  PubMed  Google Scholar 

  45. **ao X, Wei J, Yang Y et al (2016) Photoreactivity and mechanism of g-C3N4 and Ag Co-modified Bi2WO6 microsphere under visible light irradiation. ACS Sustainable Chem Eng 4(6):3017–3023. https://doi.org/10.1021/acssuschemeng.5b01701

    Article  CAS  Google Scholar 

  46. Tang J, Wu S, Wang T et al (2016) Cage-type highly graphitic porous carbon-Co3O4 polyhedron as the cathode of lithium-oxygen batteries. ACS Appl Mater Interfaces 8(4):2796–2804. https://doi.org/10.1021/acsami.5b11252

    Article  CAS  PubMed  Google Scholar 

  47. Yao L, ** Y, ** G et al (2016) Synthesis of cobalt ferrite with enhanced magnetostriction properties by the sol-gel-hydrothermal route using spent Li-ion battery. J Alloys Compnd 25(680):73–79. https://doi.org/10.1016/j.jallcom.2016.04.092

    Article  CAS  Google Scholar 

  48. Shinde VR, Mahadik SB, Gujar TP et al (2006) Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis. App Surf Sci 252(20):7487–7492. https://doi.org/10.1016/j.apsusc.2005.09.004

    Article  CAS  Google Scholar 

  49. Herrera-Zamora DM, Lizama-Tzec FI, Santos-González I et al (2020) Electrodeposited black cobalt selective coatings for application in solar thermal collectors: Fabrication, characterization, and stability. Sol Energy 1(207):1132–1145. https://doi.org/10.1016/j.solener.2020.07.042

    Article  CAS  Google Scholar 

  50. Ye L, Liu J, Gong C et al (2012) Two different roles of metallic Ag on Ag/AgX/BiOX (X= Cl, Br) visible light photocatalysts: surface plasmon resonance and Z-scheme bridge. Acs Catal 2(8):1677–1683. https://doi.org/10.1021/cs300213m

    Article  CAS  Google Scholar 

  51. Hu J, Chen D, Mo Z et al (2019) Z-Scheme 2D/2D heterojunction of black phosphorus/monolayer Bi2WO6 nanosheets with enhanced photocatalytic activities. Angew Chem Int Ed 58(7):2073–2077. https://doi.org/10.1002/anie.201813417

    Article  CAS  Google Scholar 

  52. Chen X, Li Y, Li L (2020) Facet-engineered surface and interface design of WO3/Bi2WO6 photocatalyst with direct Z-scheme heterojunction for efficient salicylic acid removal. Appl Surf Sci 1(508):144796. https://doi.org/10.1016/j.apsusc.2019.144796

    Article  CAS  Google Scholar 

  53. Lu KQ, Lin X, Tang ZR et al (2019) Silicon nanowires@ Co3O4 arrays film with Z-scheme band alignment for hydrogen evolution. Catal Today 1(335):294–299. https://doi.org/10.1016/j.cattod.2018.11.058

    Article  CAS  Google Scholar 

  54. Ghodsinia SS, Akhlaghinia B, Jahanshahi R (2021) Co3O4 nanoparticles embedded in triple-shelled graphitic carbon nitride (Co3O4/TSCN): a new sustainable and high-performance hierarchical catalyst for the Pd/Cu-free Sonogashira-Hagihara cross-coupling reaction in solvent-free conditions. Res Chem Intermed 47(8):3217–3244. https://doi.org/10.1007/s11164-021-04466-y

    Article  CAS  Google Scholar 

  55. Mohammadinezhad A, Akhlaghinia B (2021) Engineered superparamagnetic core-shell metal-organic frame-work (Fe3O4@ Ni-Co-BTC NPs) with enhanced photocatalytic activity for selective aerobic oxidation of alcohols under solar light irradiation. Catal Lett 151:107–123. https://doi.org/10.1007/s10562-020-03291-z

    Article  CAS  Google Scholar 

  56. Karimian E, Akhlaghinia B, Ghodsinia SS (2016) An efficient and convenient synthesis of N-substituted amides under heterogeneous condition using Al (HSO4)3 via Ritter reaction. J Chem Sci 128:429–439. https://doi.org/10.1007/s12039-016-1036-x

    Article  CAS  Google Scholar 

  57. Teng Z, Su X, Zheng Y et al (2015) A facile multi-interface transformation approach to monodisperse multiple-shelled periodic mesoporous organosilica hollow spheres. J Am Chem Soc 137(24):7935–7944

    Article  CAS  PubMed  Google Scholar 

  58. Tong Z, Yang D, Li Z et al (2017) Thylakoid-inspired multishell g-C3N4 nanocapsules with enhanced visible-light harvesting and electron transfer properties for high-efficiency photocatalysis. ACS Nano 11(1):1103–1112. https://doi.org/10.1021/acsnano.6b08251

    Article  CAS  PubMed  Google Scholar 

  59. Azimov F, Markova I, Stefanova V et al (2012) Synthesis and characterization of SBA-15 and Ti-SBA-15 nanoporous materials for DME catalysts. J Chem Technol Metall 47(3):333–340

    CAS  Google Scholar 

  60. Azevedo RC, Sousa RG, Macedo WA et al (2014) Combining mesoporous silica-magnetite and thermally-sensitive polymers for applications in hyperthermia. J Sol-gel Sci Technol 72:208–218. https://doi.org/10.1007/s10971-014-3307-7

    Article  CAS  Google Scholar 

  61. Chaudhuri H, Dash S, Ghorai S et al (2016) SBA-16: Application for the removal of neutral, cationic, and anionic dyes from aqueous medium. J Environ Chem Eng 4(1):157–166. https://doi.org/10.1016/j.jece.2015.11.020

    Article  CAS  Google Scholar 

  62. Qiu P, Chen H, Jiang F (2014) Cobalt modified mesoporous graphitic carbon nitride with enhanced visible-light photocatalytic activity. Rsc Adv 4(75):39969–39977. https://doi.org/10.1039/C4RA06451H

    Article  CAS  Google Scholar 

  63. Zhu HL, Zheng YQ (2018) Mesoporous Co3O4 anchored on the graphitic carbon nitride for enhanced performance supercapacitor. Electrochim Acta 1(265):372–378. https://doi.org/10.1016/j.electacta.2018.01.162

    Article  CAS  Google Scholar 

  64. Asha G, Rajeshwari V, Stephen G et al (2022) Eco-friendly synthesis and characterization of cobalt oxide nanoparticles by sativum species and its photo-catalytic activity. Mater Today: Proc 1(48):486–493. https://doi.org/10.1016/j.matpr.2021.02.338

    Article  CAS  Google Scholar 

  65. Wu SH, Chen DH (2003) Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol. J Colloid Interface Sci 259(2):282–286. https://doi.org/10.1016/S0021-9797(02)00135-2

    Article  CAS  PubMed  Google Scholar 

  66. Yao Q, Lu ZH, Yang K et al (2015) Ruthenium nanoparticles confined in SBA-15 as highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane and hydrazine borane. Sci Rep 5(1):15186. https://doi.org/10.1038/srep15186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Choi SJ, Ryu WH, Kim SJ et al (2014) Bi-functional co-sensitization of graphene oxide sheets and Ir nanoparticles on p-type Co3O4 nanofibers for selective acetone detection. J Mater Chem B 2(41):7160–7167. https://doi.org/10.1039/C4TB00767K

    Article  CAS  PubMed  Google Scholar 

  68. Li J, Tang S, Lu L et al (2007) Preparation of nanocomposites of metals, metal oxides, and carbon nanotubes via self-assembly. J Am Chem Soc 129(30):9401–9409. https://doi.org/10.1021/ja071122v

    Article  CAS  PubMed  Google Scholar 

  69. Chatterjee SG, Chatterjee S, Ray AK et al (2015) Graphene-metal oxide nanohybrids for toxic gas sensor: a review. Sens Actuator B Chem 31(221):1170–1181. https://doi.org/10.1016/j.snb.2015.07.070

    Article  CAS  Google Scholar 

  70. Kim HJ, Lee JH (2014) Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sens Actuator B Chem 1(192):607–627. https://doi.org/10.1016/j.snb.2013.11.005

    Article  CAS  Google Scholar 

  71. Liang Y, Li Y, Wang H et al (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10(10):780–786. https://doi.org/10.1038/nmat3087

    Article  CAS  PubMed  Google Scholar 

  72. Wang C, Zhu J, Liang S et al (2014) Reduced graphene oxide decorated with CuO-ZnO hetero-junctions: towards high selective gas-sensing property to acetone. J Mater Chem A 2(43):18635–18643. https://doi.org/10.1039/C4TA03931A

    Article  CAS  Google Scholar 

  73. Liu J, Song Y, Xu H et al (2017) Non-metal photocatalyst nitrogen-doped carbon nanotubes modified mpg-C3N4: facile synthesis and the enhanced visible-light photocatalytic activity. J Colloid Interface Sci 15(494):38–46. https://doi.org/10.1016/j.jcis.2017.01.010

    Article  CAS  Google Scholar 

  74. Garavaglia R, Mari CM, Trasatti S et al (1983) Physicochemical characterization of Co3O4 prepared by thermal decomposition I: Phase composition and morphology. Surf Technol 19(3):197–215. https://doi.org/10.1016/0376-4583(83)90024-9

    Article  CAS  Google Scholar 

  75. Kavitha T, Haider S, Kamal T et al (2017) Thermal decomposition of metal complex precursor as route to the synthesis of Co3O4 nanoparticles: antibacterial activity and mechanism. J Alloys Compd 15(704):296–302. https://doi.org/10.1016/j.jallcom.2017.01.306

    Article  CAS  Google Scholar 

  76. Suyana P, Ganguly P, Nair BN et al (2017) Co3O4-C3N4 p-n nano-heterojunctions for the simultaneous degradation of a mixture of pollutants under solar irradiation. Environ Sci Nano 4(1):212–221. https://doi.org/10.1039/C6EN00410E

    Article  CAS  Google Scholar 

  77. Xu R, Zeng HC (2004) Self-generation of tiered surfactant superstructures for one-pot synthesis of Co3O4 nanocubes and their close-and non-close-packed organizations. Langmuir 20(22):9780–9790. https://doi.org/10.1021/la049164+

    Article  CAS  PubMed  Google Scholar 

  78. Zhao S, Zhang Y, Zhou Y et al (2018) Facile one-step synthesis of hollow mesoporous g-C3N4 spheres with ultrathin nanosheets for photoredox water splitting. Carbon 1(126):247–256. https://doi.org/10.1016/j.carbon.2017.10.033

    Article  CAS  Google Scholar 

  79. Baciocchi E, Bietti M, Lanzalunga O (2000) Mechanistic aspects of β-bond-cleavage reactions of aromatic radical cations. Acc Chem Res 33(4):243–251. https://doi.org/10.1021/ar980014y

    Article  CAS  PubMed  Google Scholar 

  80. Long B, Ding Z, Wang X (2013) Carbon nitride for the selective oxidation of aromatic alcohols in water under visible light. Chemsuschem 6(11):2074–2078. https://doi.org/10.1002/cssc.201300360

    Article  CAS  PubMed  Google Scholar 

  81. Kim S, Lee HE, Suh JM et al (2020) Sequential connection of mutually exclusive catalytic reactions by a method controlling the presence of an MOF catalyst: One-pot oxidation of alcohols to carboxylic acids. Inorg Chem 59(23):17573–17582. https://doi.org/10.1021/acs.inorgchem.0c02809

    Article  CAS  PubMed  Google Scholar 

  82. Kumar A, Sharma PK, Banerji KK (2002) Correlation analysis of reactivity in oxidation of substituted benzyl alcohols by tetrabutylammonium tribromide. J Phys Org Chem 15(10):721–727. https://doi.org/10.1002/poc.541

    Article  CAS  Google Scholar 

  83. Wang S, Li D, Sun C et al (2014) Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation. Appl Catal B-Environ 1(144):885–892. https://doi.org/10.1016/j.apcatb.2013.08.008

    Article  CAS  Google Scholar 

  84. Zhou P, Yu J, Jaroniec M (2014) All-solid-state Z-scheme photocatalytic systems. Adv Mater 26(29):4920–4935. https://doi.org/10.1002/adma.201400288

    Article  CAS  PubMed  Google Scholar 

  85. Long M, Cai W, Cai J et al (2006) Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation. J Phys Chem B 110(41):20211–20216. https://doi.org/10.1021/jp063441z

    Article  CAS  PubMed  Google Scholar 

  86. Chen S, Hu Y, Meng S et al (2014) Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3. Appl Catal B- Environ 5(150):564–573. https://doi.org/10.1016/j.apcatb.2013.12.053

    Article  CAS  Google Scholar 

  87. Gao Z, Zhang D, Jun YS (2021) Does tert-butyl alcohol really terminate the oxidative activity of •OH in inorganic redox chemistry? Environ Sci Technol 55(15):10442–10450. https://doi.org/10.1021/acs.est.1c01578

    Article  CAS  PubMed  Google Scholar 

  88. Fonagy O, Szabo-Bardos E, Horvath O (2021) 1,4-Benzoquinone and 1,4-hydroquinone based determination of electron and superoxide radical formed in heterogeneous photocatalytic systems. J Photochem Photobio A: Chem 15(407):113057. https://doi.org/10.1016/j.jphotochem.2020.113057

    Article  CAS  Google Scholar 

  89. Su F, Mathew SC, Lipner G et al (2010) mpg-C3N4-catalyzed selective oxidation of alcohols using O2 and visible light. J Am Chem Soc 132(46):16299–16301. https://doi.org/10.1021/ja102866p

    Article  CAS  PubMed  Google Scholar 

  90. Xu X, Liu R, Cui Y et al (2017) PANI/FeUiO-66 nanohybrids with enhanced visible-light promoted photocatalytic activity for the selectively aerobic oxidation of aromatic alcohols. Appl Catal B- Environ 5(210):484–494. https://doi.org/10.1016/j.apcatb.2017.04.021

    Article  CAS  Google Scholar 

  91. Song H, Liu Z, Wang Y et al (2019) Template-free synthesis of hollow TiO2 nanospheres supported Pt for selective photocatalytic oxidation of benzyl alcohol to benzaldehyde. Green Energy Environ 4(3):278–286. https://doi.org/10.1016/j.gee.2018.09.001

    Article  Google Scholar 

  92. Unsworth CA, Coulson B, Chechik V et al (2017) Aerobic oxidation of benzyl alcohols to benzaldehydes using monoclinic bismuth vanadate nanoparticles under visible light irradiation: Photocatalysis selectivity and inhibition. J Catal 1(354):152–159. https://doi.org/10.1016/j.jcat.2017.08.023

    Article  CAS  Google Scholar 

  93. Lu G, Huang X, Li Y et al (2020) Covalently integrated core-shell MOF@ COF hybrids as efficient visible-light-driven photocatalysts for selective oxidation of alcohols. J Energy Chem 1(43):8–15. https://doi.org/10.1016/j.jechem.2019.07.014

    Article  Google Scholar 

  94. Zhang XF, Wang Z, Zhong Y et al (2019) TiO2 nanorods loaded with AuPt alloy nanoparticles for the photocatalytic oxidation of benzyl alcohol. J Phys Chem Solids 1(126):27–32. https://doi.org/10.1016/j.jpcs.2018.10.026

    Article  CAS  Google Scholar 

  95. Li H, Qin F, Yang Z et al (2017) New reaction pathway induced by plasmon for selective benzyl alcohol oxidation on BiOCl possessing oxygen vacancies. J Am Chem Soc 139(9):3513–3521. https://doi.org/10.1021/jacs.6b12850

    Article  CAS  PubMed  Google Scholar 

  96. Yang Z, Xu X, Liang X et al (2017) Construction of heterostructured MIL-125/Ag/g-C3N4 nanocomposite as an efficient bifunctional visible light photocatalyst for the organic oxidation and reduction reactions. Appl Catal B- Environ 15(205):42–54. https://doi.org/10.1016/j.apcatb.2016.12.012

    Article  CAS  Google Scholar 

  97. Zhang W, Bariotaki A, Smonou I et al (2017) Visible-light-driven photooxidation of alcohols using surface-doped graphitic carbon nitride. Green Chem 19(9):2096–2100. https://doi.org/10.1039/C7GC00539C

    Article  CAS  Google Scholar 

  98. Higashimoto S, Kitao N, Yoshida N et al (2009) Selective photocatalytic oxidation of benzyl alcohol and its derivatives into corresponding aldehydes by molecular oxygen on titanium dioxide under visible light irradiation. J Catal 266(2):279–285. https://doi.org/10.1016/j.jcat.2009.06.018

    Article  CAS  Google Scholar 

  99. Ji X, Chen Y, Paul B et al (2019) Photocatalytic oxidation of aromatic alcohols over silver supported on cobalt oxide nanostructured catalyst. J Alloys Compd 30(783):583–592. https://doi.org/10.1016/j.jallcom.2018.12.307

    Article  CAS  Google Scholar 

  100. Teng Y, Song LX, Wang LB et al (2014) Face-raised octahedral Co3O4 nanocrystals and their catalytic activity in the selective oxidation of alcohols. J Phys Chem C 118(9):4767–4773. https://doi.org/10.1021/jp412175t

    Article  CAS  Google Scholar 

  101. Zhu J, Kailasam K, Fischer A et al (2011) Supported cobalt oxide nanoparticles as catalyst for aerobic oxidation of alcohols in liquid phase. ACS Catal 1(4):342–347. https://doi.org/10.1021/cs100153a

    Article  CAS  Google Scholar 

  102. Iinuma M, Moriyama K, Togo H (2014) Oxidation of alcohols to aldehydes or ketones with 1-acetoxy-1, 2-benziodoxole-3 (1H)-one derivatives. Eur J Org Chem 2014(4):772–780. https://doi.org/10.1002/ejoc.201301466

    Article  CAS  Google Scholar 

  103. Wang X, Liu R, ** Y et al (2008) TEMPO/HCl/NaNO2 Catalyst: A transition-metal-free approach to efficient aerobic oxidation of alcohols to aldehydes and ketones under mild conditions. Chem Eur J 14(9):2679–2685. https://doi.org/10.1002/chem.200701818

    Article  CAS  PubMed  Google Scholar 

  104. Leduc AB, Jamison TF (2012) Continuous flow oxidation of alcohols and aldehydes utilizing bleach and catalytic tetrabutylammonium bromide. Org Process Res Dev 16(5):1082–1089. https://doi.org/10.1021/op200118h

    Article  CAS  Google Scholar 

  105. Ogiwara Y, Ono Y, Sakai N (2016) Indium (III) isopropoxide as a hydrogen transfer catalyst for conversion of benzylic alcohols into aldehydes or ketones via oppenauer oxidation. Synthesis 48(23):4143–4148. https://doi.org/10.1055/s-0035-1562542

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the partial support of this study by Ferdowsi University of Mashhad Research Council (Grant No. p/3/51177).

Author information

Authors and Affiliations

Authors

Contributions

Mehdi Tayebnia: Experimental investigation.

Batool Akhlaghinia: Supervision, writing, review, editing and funding acquisition.

Malihe Nayamadi Mahmoodabadi: visualization, review and editing.

Corresponding author

Correspondence to Batool Akhlaghinia.

Ethics declarations

Conflicts of Interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 751 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tayebnia, M., Akhlaghinia, B. & Mahmoodabadi, M.N. Hierarchical Co3O4/TSCN Nanocapsules as Green Photocatalyst for Oxidation of Alcohols. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04688-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04688-w

Keywords

Navigation