Log in

Promoted Ni Catalyst Over Titania-Zirconia Support for Partial Oxidation of Methane: Simple and Practical Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Methane is a highly potent greenhouse gas, and its mitigation is deliberately needed. The partial oxidation of methane (POM) is a promising route for depleting methane with a high H2/CO ratio through direct and indirect reaction pathways. In this study, the catalyst Ni stabilized over titania-zirconia support is found to retain the catalytic active sites exposed for a constant 30% H2 yield with an H2/CO ratio of 4.25 up to 300 h. Furthermore, the promotion role of 2wt% Cs, Ce, Sr over Ni/TiZr catalyst is studied for POM reaction where 2wt% Cs addition to Ni/TiZr is found to be decremental toward POM due to the lowest density of basic sites. 2wt% Sr promoted Ni/TiZr performs best due to the highest edge of reducibility, the highest population of active sites, and retention of active sites in a reduced state against O2 during POM reaction. It ensures > 45% CH4 conversion, > 40% H2 yield, and 3.7 H2/CO ratio at 600 °C during the 300-min time on stream. At high reaction temperature (750 °C) over NiSr/TiZr catalyst, the H2/CO ratio is dropped to ~ 2 and the H2 yield is jumped to 97% indicating the exclusive presence of a direct pathway for POM.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Badr O, Probert SD, O’Callaghan PW (1991) Atmospheric methane: its contribution to global warming. Appl Energy 40:273–313. https://doi.org/10.1016/0306-2619(91)90021-O

    Article  ADS  CAS  Google Scholar 

  2. Li L, Dostagir MD, NH, Shrotri A, et al (2021) Partial oxidation of methane to syngas via formate intermediate found for a ruthenium-rhenium bimetallic catalyst. ACS Catal 11:3782–3789. https://doi.org/10.1021/acscatal.0c05491

    Article  CAS  Google Scholar 

  3. Fazlikeshteli S, Vendrell X, Llorca J (2023) Bimetallic Ru–Pd supported on CeO2 for the catalytic partial oxidation of methane into syngas. Fuel 334:126799. https://doi.org/10.1016/j.fuel.2022.126799

    Article  CAS  Google Scholar 

  4. Chen Y, Tomishige K, Yokoyama K, Fujimoto K (1997) Promoting effect of Pt, Pd and Rh noble metals to the Ni0.03Mg0.97O solid solution catalysts for the reforming of CH4 with CO2. Appl Catal A Gen 165:335–347. https://doi.org/10.1016/S0926-860X(97)00216-0

    Article  CAS  Google Scholar 

  5. Gavrikov AV, Loktev AS, Ilyukhin AB et al (2023) Partial oxidation of methane to syngas over SmCoO3-derived catalysts: the effect of the supercritical fluid assisted modification of the perovskite precursor. Int J Hydrogen Energy 48:2998–3012. https://doi.org/10.1016/j.ijhydene.2022.10.068

    Article  CAS  Google Scholar 

  6. Pan H, Li L, Deng X et al (2013) Improvement of oxygen permeation in perovskite hollow fibre membranes by the enhanced surface exchange kinetics. J Memb Sci 428:198–204. https://doi.org/10.1016/j.memsci.2012.10.020

    Article  CAS  Google Scholar 

  7. Tan X, Liu N, Meng B et al (2012) Oxygen permeation behavior of La 0.6Sr 0.4Co 0.8Fe 0.2O 3 hollow fibre membranes with highly concentrated CO 2 exposure. J Memb Sci 389:216–222. https://doi.org/10.1016/j.memsci.2011.10.032

    Article  CAS  Google Scholar 

  8. Wang H, Cong Y, Yang W (2002) Oxygen permeation study in a tubular Ba0.5Sr0.5Co0.8Fe0.2O3- δ oxygen permeable membrane. J Memb Sci 210:259–271. https://doi.org/10.1016/S0376-7388(02)00361-7

    Article  CAS  Google Scholar 

  9. Murwani IK, Scheurell S, Feist M, Kemnitz E (2002) O-isotope exchange behaviour and oxidation activity of La 1–x Sr x MnO 3+d. J Therm Anal Calorim 69:9–21

    Article  CAS  Google Scholar 

  10. Jiang SP (2002) A comparison of O2 reduction reactions on porous (La, Sr)MnO3 and (La, Sr)(Co, Fe)O3 electrodes. Solid State Ionics 146:1–22. https://doi.org/10.1016/S0167-2738(01)00997-3

    Article  CAS  Google Scholar 

  11. Alvarez-Galvan C, Melian M, Ruiz-Matas L et al (2019) Partial oxidation of methane to syngas over nickel-based catalysts: Influence of support type, addition of rhodium, and preparation method. Front Chem 7:1–16. https://doi.org/10.3389/fchem.2019.00104

    Article  CAS  Google Scholar 

  12. Qian-Gu Y, Chun-Rong L, Wei-Zheng W et al (2001) Activation of methane over Ni/TiO2 catalyst. Acta Physico-Chimica Sin 17:733–738. https://doi.org/10.3866/pku.whxb20010813

    Article  Google Scholar 

  13. Yang H, Zhang Z, He Y et al (2023) Study of Ni catalysts with different Al2O3 supports in the partial oxidation of methane reaction. Ind Eng Chem Res 62:12120–12132. https://doi.org/10.1021/acs.iecr.3c00999

    Article  CAS  Google Scholar 

  14. Yang H, An Z, Xu Y et al (2023) Oscillatory behavior of Ni/TiO2 catalyst during partial oxidation of methane: Understanding the role of strong metal-support interaction. Mol Catal 547:113374. https://doi.org/10.1016/j.mcat.2023.113374

    Article  CAS  Google Scholar 

  15. Hasanat AU, Khoja AH, Naeem N et al (2023) Thermocatalytic partial oxidation of methane to syngas (H2, CO) production using Ni/La2O3 modified biomass fly ash supported catalyst. Results Eng 19:101333. https://doi.org/10.1016/j.rineng.2023.101333

    Article  CAS  Google Scholar 

  16. Pompeo F, Nichio NN, Ferretti OA, Resasco D (2005) Study of Ni catalysts on different supports to obtain synthesis gas. Int J Hydrogen Energy 30:1399–1405. https://doi.org/10.1016/j.ijhydene.2004.10.004

    Article  CAS  Google Scholar 

  17. Shah M, Bordoloi A, Nayak AK, Mondal P (2019) Effect of Ti/Al ratio on the performance of Ni/TiO2-Al2O3 catalyst for methane reforming with CO2. Fuel Process Technol 192:21–35. https://doi.org/10.1016/j.fuproc.2019.04.010

    Article  CAS  Google Scholar 

  18. Troitzsch U (2006) TiO2-doped zirconia: crystal structure, monoclinic-tetragonal phase transition, and the new tetragonal compound Zr3TiO8. J Am Ceram Soc 89:3201–3210. https://doi.org/10.1111/j.1551-2916.2006.01200.x

    Article  CAS  Google Scholar 

  19. Naumenko A, Gnatiuk I, Smirnova N, Eremenko A (2012) Characterization of sol–gel derived TiO2/ZrO2 films and powders by Raman spectroscopy. Thin Solid Films 520:4541–4546. https://doi.org/10.1016/j.tsf.2011.10.189

    Article  ADS  CAS  Google Scholar 

  20. Mandal S, Sinhamahapatra A, Rakesh B et al (2011) Synthesis, characterization of Ga-TUD-1 catalyst and its activity towards styrene epoxidation reaction. Catal Commun 12:734–738. https://doi.org/10.1016/j.catcom.2011.01.004

    Article  CAS  Google Scholar 

  21. Price G (2006) Solid-state ion-exchange of zeolites Catal Prep 1:283–295. https://doi.org/10.1201/9781420006506.ch12

    Article  Google Scholar 

  22. Cao TT, Song ZG, Wang SB, **a J (2015) A comparative study of the specific surface area and pore structure of different shales and their kerogens. Sci China Earth Sci 58:510–522. https://doi.org/10.1007/s11430-014-5021-2

    Article  ADS  CAS  Google Scholar 

  23. Zhang J, Li M, Feng Z et al (2006) UV Raman spectroscopic study on TiO2- I. phase transformation at the surface and in the bulk. J Phys Chem B 110:927–935. https://doi.org/10.1021/jp0552473

    Article  CAS  PubMed  Google Scholar 

  24. Shanmukh S, Dluhy RA (2004) 2D IR analyses of rate processes in lipid - antibiotic monomolecular films. Vib Spectrosc 36:167–177. https://doi.org/10.1016/j.vibspec.2004.05.002

    Article  CAS  Google Scholar 

  25. Majid A, Jabeen A, Khan SUD, Haider S (2019) First principles investigations of vibrational properties of titania and zirconia clusters. J Nanoparticle Res 21:1–15. https://doi.org/10.1007/s11051-019-4461-1

    Article  CAS  Google Scholar 

  26. Gotić M, Ivanda M, Popović S et al (1997) Raman investigation of nanosized TiO2. J Raman Spectrosc 28:555–558. https://doi.org/10.1002/(sici)1097-4555(199707)28:7%3c555::aid-jrs118%3e3.3.co;2-j

    Article  ADS  Google Scholar 

  27. Zhang WF, Yin Z, Zhang MS et al (1999) Roles of defects and grain sizes in photoluminescence of nanocrystalline SrTiO3. J Phys Condens Matter 11:5655. https://doi.org/10.1088/0953-8984/11/29/312

    Article  ADS  CAS  Google Scholar 

  28. Naumenko A, Gnatiuk I, Smirnova N, Eremenko A (2012) Characterization of sol-gel derived TiO2/ZrO2 films and powders by Raman spectroscopy. Thin Solid Films 520:4541–4546. https://doi.org/10.1016/j.tsf.2011.10.189

    Article  ADS  CAS  Google Scholar 

  29. Basahel SN, Ali TT, Mokhtar M, Narasimharao K (2015) Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange. Nanoscale Res Lett. https://doi.org/10.1186/s11671-015-0780-z

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kambur A, Pozan GS, Boz I (2012) Preparation, characterization and photocatalytic activity of TiO 2-ZrO 2 binary oxide nanoparticles. Appl Catal B Environ 115–116:149–158. https://doi.org/10.1016/j.apcatb.2011.12.012

    Article  CAS  Google Scholar 

  31. Al-Fatesh AS, Arafat Y, Kasim SO et al (2021) In situ auto-gasification of coke deposits over a novel Ni-Ce/W-Zr catalyst by sequential generation of oxygen vacancies for remarkably stable syngas production via CO2-reforming of methane. Appl Catal B Environ 280:119445. https://doi.org/10.1016/j.apcatb.2020.119445

    Article  CAS  Google Scholar 

  32. Abasaeed AE, Lanre MS, Kasim SO et al (2023) Syngas production from methane dry reforming via optimization of tungsten trioxide-promoted mesoporous γ-alumina supported nickel catalyst. Int J Hydrogen Energy 48:26492–26505. https://doi.org/10.1016/j.ijhydene.2022.09.313

    Article  CAS  Google Scholar 

  33. Darkwah WK, Appiagyei AB, Puplampu JB, Otabil Bonsu J (2023) Mechanistic understanding of the use of single-atom and nanocluster catalysts for syngas production via partial oxidation of methane. Langmuir 39:8568–8588. https://doi.org/10.1021/acs.langmuir.2c03271

    Article  CAS  PubMed  Google Scholar 

  34. Al-Fatesh AS, Patel R, Srivastava VK et al (2022) Barium-promoted yttria–zirconia-supported Ni catalyst for hydrogen production via the dry reforming of methane: role of barium in the phase stabilization of cubic ZrO2. ACS Omega 7:16468–16483. https://doi.org/10.1021/acsomega.2c00471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Choudhary VR, Mondal KC, Choudhary TV (2006) Partial oxidation of methane to syngas with or without simultaneous steam or CO2 reforming over a high-temperature stable-NiCoMgCeOx supported on zirconia-hafnia catalyst. Appl Catal A Gen 306:45–50. https://doi.org/10.1016/j.apcata.2006.03.032

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their sincere appreciation to the Researchers Supporting Project number (RSP2024R368), King Saud University, Riyadh, Saudi Arabia. RK and DMV acknowledge Indus University, Ahmedabad, for supporting research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmed S. Al-Fatesh or Rawesh Kumar.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 107 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Fatesh, A.S., Vadodariya, D.M., Banabdwin, K.M. et al. Promoted Ni Catalyst Over Titania-Zirconia Support for Partial Oxidation of Methane: Simple and Practical Catalysts. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04627-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04627-9

Keywords

Navigation