Log in

One-Step Solvothermal Synthesis of (Mn, In) (S, Se) Nanosheets with Porous Structure for Water Splitting Without Sacrificial Agents

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Polyanionic semiconductor materials are starting to receive widespread attention because of their relatively small band gap and size. Here, a class of (Mn, In) (S, Se) nanosheets with a porous structure is prepared by one-step solvothermal method. (Mn, In) (S, Se) nanosheets exhibit the most excellent photocatalytic hydrogen splitting performance (396 µmolg−1 h−1) under 300 w xenon lamp irradiation without sacrificial agent, which is 11 times higher than that of MnIn2Se4 (35 µmolg−1 h−1). This work opens a new gateway to exploring polyanionic photocatalysts for photocatalytic applications.

Graphical Abstract

Herein, a novel polyanionic semiconductor photocatalyst (Mn, In) (S, Se) nanosheets with a porous structure were prepared for the first time by one-step solvothermal method. The synthesized porous nanosheets can be used for photocatalytic hydrogen production in pure water without sacrificial agents under the irradiation of a xenon lamp. The satisfactory performance of (Mn, In) (S, Se) is tightly connected with the layered porous structure, which leads to more exposed active sites and shorter migration distances of photogenerated electrons and holes. Moreover, this polyanion modification strategy makes the band gap of the material smaller and accelerates the electron migration rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lin L, Hisatomi T, Chen S, Takata T, Domen K (2020) Visible-light-driven photocatalytic water splitting: recent progress and challenges. Trends Chem 2:813–824. https://doi.org/10.1016/j.trechm.2020.06.006

    Article  CAS  Google Scholar 

  2. Zhao Y, Zhao S, Huang H, Liu Z, Cheng X, Dawson G (2023) Enhanced photocatalytic hydrogen production by the formation of TiNT-BN bonds. Appl Surf Sci 623:157005. https://doi.org/10.1016/j.apsusc.2023.157005

    Article  CAS  Google Scholar 

  3. Liu C, Hao D, Ye J, Ye S, Zhou F, **e H, Qin G, Xu J, Liu J, Li S, Sun C (2023) Knowledge-driven design and lab-based evaluation of B-doped TiO2 photocatalysts for ammonia synthesis. Adv Energy Mater 13:2204126. https://doi.org/10.1002/aenm.202204126

    Article  CAS  Google Scholar 

  4. Hao D, Huang Q, Wei W, Bai X, Ni B-J (2021) A reusable, separation-free and biodegradable calcium alginate/g-C3N4 microsphere for sustainable photocatalytic wastewater treatment. J Clean Prod 314:128033. https://doi.org/10.1016/j.jclepro.2021.128033

    Article  CAS  Google Scholar 

  5. Hao D, Ren J, Wang Y, Arandiyan H, Garbrecht M, Bai X, Shon HK, Wei W, Ni BJ, (2021) A green synthesis of Ru modified g-C3N4 nanosheets for enhanced photocatalytic ammonia synthesis, Energy Mater Adv, https://doi.org/10.34133/2021/9761263

  6. Arandiyan H, Mofarah SS, Sorrell CC, Doustkhah E, Sajjadi B, Hao D, Wang Y, Sun H, Ni B-J, Rezaei M, Shao Z, Maschmeyer T (2021) Defect engineering of oxide perovskites for catalysis and energy storage: synthesis of chemistry and materials science. Chem Soc Rev 50:10116–10211. https://doi.org/10.1039/D0CS00639D

    Article  CAS  PubMed  Google Scholar 

  7. Gao D, Xu J, Wang L, Zhu B, Yu H, Yu J (2022) Optimizing atomic hydrogen desorption of sulfur-rich NiS1+x cocatalyst for boosting photocatalytic H2 evolution. Adv Mater 34:2108475. https://doi.org/10.1002/adma.202108475

    Article  CAS  Google Scholar 

  8. Wang Q, Nakabayashi M, Hisatomi T, Sun S, Akiyama S, Wang Z, Pan Z, **ao X, Watanabe T, Yamada T, Shibata N, Takata T, Domen K (2019) Oxysulfide photocatalyst for visible-light-driven overall water splitting. Nat Mater 18:827–832. https://doi.org/10.1038/s41563-019-0399-z

    Article  CAS  PubMed  Google Scholar 

  9. Wolff CM, Frischmann PD, Schulze M, Bohn BJ, Wein R, Livadas P, Carlson MT, Jäckel F, Feldmann J, Würthner F, Stolarczyk JK (2018) All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods. Nat Energy 3:862–869. https://doi.org/10.1038/s41560-018-0229-6

    Article  CAS  Google Scholar 

  10. Shi R, Ye HF, Liang F, Wang Z, Li K, Weng Y, Chen Y (2018) Interstitial P-doped CdS with long-lived photogenerated electrons for photocatalytic water splitting without sacrificial agents. Adv Mater 30(6):1705941. https://doi.org/10.1002/adma.201705941

    Article  CAS  Google Scholar 

  11. Chatterjee K, Skrabalak SE (2021) Durable metal heteroanionic photocatalysts. ACS Appl Mater Interfaces 13:36670–36678. https://doi.org/10.1021/acsami.1c09774

    Article  CAS  PubMed  Google Scholar 

  12. Yaghoubi-berijani M, Bahramian B (2020) Synthesis, and new design into enhanced photocatalytic activity of porphyrin immobilization on the surface of bismuth oxyhalides modified with polyaniline. J Inorganic Organometallic Polym Mater 30:4637–4654. https://doi.org/10.1007/s10904-020-01652-0

    Article  CAS  Google Scholar 

  13. Takata T, Pan C, Domen K (2015) Recent progress in oxynitride photocatalysts for visible-light-driven water splitting. Sci Technol Adv Mater 16(3):033506. https://doi.org/10.1088/1468-6996/16/3/033506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cuan J, Zhou Y, Zhang J, Zhou T, Liang G, Li S, Yu X, Pang WK, Guo Z (2019) Multiple anionic transition-metal oxycarbide for better lithium storage and facilitated multielectron reactions. ACS Nano 13:11665–11675. https://doi.org/10.1021/acsnano.9b05580

    Article  CAS  PubMed  Google Scholar 

  15. Zhang B, **ao J, Jiao S, Zhu H (2022) Thermodynamic and thermoelectric properties of titanium oxycarbide with metal vacancy. Int J Miner Metall Mater 29:787–795. https://doi.org/10.1007/s12613-022-2421-8

    Article  CAS  Google Scholar 

  16. Fu J, Skrabalak SE (2017) Enhanced photoactivity from single-crystalline SrTaO(2) N nanoplates synthesized by topotactic nitridation. Angew Chem Int Ed Engl 56:14169–14173. https://doi.org/10.1002/anie.201708645

    Article  CAS  PubMed  Google Scholar 

  17. Huang K, Zhao Z, Du H, Du P, Wang H, Wang R, Lin S, Wei H, Long Y, Lei M, Guo W, Wu H (2020) Rapid thermal annealing toward high-quality 2D cobalt fluoride oxide as an advanced oxygen evolution electrocatalyst. ACS Sustain Chem Eng 8:6905–6913. https://doi.org/10.1021/acssuschemeng.0c00830

    Article  CAS  Google Scholar 

  18. Wu T, Zhang Q, Hou Y, Wang L, Mao C, Zheng S-T, Bu X, Feng P (2013) Monocopper do** in Cd-In-S supertetrahedral nanocluster via two-step strategy and enhanced photoelectric response. J Am Chem Soc 135:10250–10253. https://doi.org/10.1021/ja404181c

    Article  CAS  PubMed  Google Scholar 

  19. Zhou Y, Wang Y, Zhao H, Su J, Zhang H, Wang Y (2020) Investigation of anion do** effect to boost overall water splitting. J Catal 381:84–95. https://doi.org/10.1016/j.jcat.2019.10.026

    Article  CAS  Google Scholar 

  20. Li J, Chen J, Yu Y, He C (2015) Fe–Mn–Ce/ceramic powder composite catalyst for highly volatile elemental mercury removal in simulated coal-fired flue gas. J Ind Eng Chem 25:352–358. https://doi.org/10.1016/j.jiec.2014.11.015

    Article  CAS  Google Scholar 

  21. Shin DW, Choi J-W, Choi W-K, Cho YS, Yoon S-J (2009) XPS/EXAFS study of cycleability improved LiMn2O4 thin film cathodes prepared by solution deposition. Electrochem Commun 11:695–698. https://doi.org/10.1016/j.elecom.2009.01.019

    Article  CAS  Google Scholar 

  22. Zhao Z, Zhao J, Yang C (2017) Efficient removal of ciprofloxacin by peroxymonosulfate/Mn3O4-MnO2 catalytic oxidation system. Chem Eng J 327:481–489. https://doi.org/10.1016/j.cej.2017.06.064

    Article  CAS  Google Scholar 

  23. Hsin C-L, Lee W-F, Huang C-T, Huang C-W, Wu W-W, Chen L-J (2011) Growth of CuInSe2 and In2Se3/CuInSe2 nano-heterostructures through solid state reactions. Nano Lett 11:4348–4351. https://doi.org/10.1021/nl202463w

    Article  CAS  PubMed  Google Scholar 

  24. Lauth J, Gorris FES, Khoshkhoo MS, Chassé T, Friedrich W, Lebedeva V, Meyer A, Klinke C, Kornowski A, Scheele M, Weller H (2016) Solution-processed two-dimensional ultrathin inse nanosheets. Chem Mater 28:1728–1736. https://doi.org/10.1021/acs.chemmater.5b04646

    Article  CAS  Google Scholar 

  25. Liu L, Liu H, Kou H-Z, Wang Y, Zhou Z, Ren M, Ge M, He X (2009) Morphology control of β-In2S3 from chrysanthemum-like microspheres to hollow microspheres: synthesis and electrochemical properties. Cryst Growth Des 9:113–117. https://doi.org/10.1021/cg701194b

    Article  CAS  Google Scholar 

  26. Liang H, Feng T, Tan S, Zhao K, Wang W, Dong B, Cao L (2019) Two-dimensional (2D) MnIn(2)Se(4) nanosheets with porous structure: a novel photocatalyst for water splitting without sacrificial agents. Chem Commun (Camb) 55:15061–15064. https://doi.org/10.1039/c9cc08145c

    Article  CAS  PubMed  Google Scholar 

  27. Chen H, Leng W, Xu Y (2014) Enhanced visible-light photoactivity of CuWO4 through a surface-deposited CuO. J Phys Chem C 118:9982–9989. https://doi.org/10.1021/jp502616h

    Article  CAS  Google Scholar 

  28. Jang JS, Kim HG, Lee JS (2012) Heterojunction semiconductors: a strategy to develop efficient photocatalytic materials for visible light water splitting. Catal Today 185:270–277. https://doi.org/10.1016/j.cattod.2011.07.008

    Article  CAS  Google Scholar 

  29. Zong X, Yan H, Wu G, Ma G, Wen F, Wang L, Li C (2008) Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J Am Chem Soc 130:7176–7177. https://doi.org/10.1021/ja8007825

    Article  CAS  PubMed  Google Scholar 

  30. Guo F, Shi W, Wang H, Han M, Li H, Huang H, Liu Y, Kang Z (2017) Facile fabrication of a CoO/g-C3N4 p–n heterojunction with enhanced photocatalytic activity and stability for tetracycline degradation under visible light, catalysis. Sci Technol 7:3325–3331. https://doi.org/10.1039/C7CY00960G

    Article  CAS  Google Scholar 

  31. Pinaud BA, Benck JD, Seitz LC, Forman AJ, Chen Z, Deutsch TG, James BD, Baum KN, Baum GN, Ardo S, Wang H, Miller E, Jaramillo TF (2013) Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ Sci 6:1983–2002. https://doi.org/10.1039/C3EE40831K

    Article  CAS  Google Scholar 

  32. Yang J, Chen D, Zhu Y, Zhang Y, Zhu Y (2017) 3D–3D porous Bi2WO6/graphene hydrogel composite with excellent synergistic effect of adsorption-enrichment and photocatalytic degradation. Appl Catal B 205:228–237. https://doi.org/10.1016/j.apcatb.2016.12.035

    Article  CAS  Google Scholar 

  33. Gopi T, Swetha G, Chandra Shekar S, Ramakrishna C, Saini B, Krishna R, Rao PVL (2017) Catalytic decomposition of ozone on nanostructured potassium and proton containing δ-MnO2 catalysts. Catal Commun 92:51–55. https://doi.org/10.1016/j.catcom.2017.01.002

    Article  CAS  Google Scholar 

  34. Gao Q, Huang C-Q, Ju Y-M, Gao M-R, Liu J-W, An D, Cui C-H, Zheng Y-R, Li W-X, Yu S-H (2017) Phase-selective syntheses of cobalt telluride nanofleeces for efficient oxygen evolution catalysts. Angew Chem Int Ed 56:7769–7773. https://doi.org/10.1002/anie.201701998

    Article  CAS  Google Scholar 

  35. Shi R, Ye H-F, Liang F, Wang Z, Li K, Weng Y, Lin Z, Fu W-F, Che C-M, Chen Y (2018) Interstitial P-Doped CdS with long-lived photogenerated electrons for photocatalytic water splitting without sacrificial agents. Adv Mater 30:1705941. https://doi.org/10.1002/adma.201705941

    Article  CAS  Google Scholar 

  36. Lian Z, Xu P, Wang W, Zhang D, **ao S, Li X, Li G (2015) C60-decorated CdS/TiO2 mesoporous architectures with enhanced photostability and photocatalytic activity for H2 evolution. ACS Appl Mater Interfaces 7:4533–4540. https://doi.org/10.1021/am5088665

    Article  CAS  PubMed  Google Scholar 

  37. Song M, Wu Y, Zheng G, Du C, Su Y (2019) Junction of porous g-C3N4 with BiVO4 using Au as electron shuttle for cocatalyst-free robust photocatalytic hydrogen evolution. Appl Surf Sci 498:143808. https://doi.org/10.1016/j.apsusc.2019.143808

    Article  CAS  Google Scholar 

  38. Wang J, Cong J, Xu H, Wang J, Liu H, Liang M, Gao J, Ni Q, Yao J (2017) Facile gel-based morphological control of Ag/g-C3N4 porous nanofibers for photocatalytic hydrogen generation. ACS Sustain Chem Eng 5:10633–10639. https://doi.org/10.1021/acssuschemeng.7b02608

    Article  CAS  Google Scholar 

  39. Li F, Wang Y, Du J, Zhu Y, Xu C, Sun L (2018) Simultaneous oxidation of alcohols and hydrogen evolution in a hybrid system under visible light irradiation. Appl Catal B 225:258–263. https://doi.org/10.1016/j.apcatb.2017.11.072

    Article  CAS  Google Scholar 

  40. Huang X, Sun L, Liu X, Ge M, Zhao B, Bai Y, Wang Y, Han S, Li Y, Han Y, Zhang C (2023) Increase and enrichment of active electrons by carbon dots induced to improve TiO2 photocatalytic hydrogen production activity. Appl Surf Sci 630:157494. https://doi.org/10.1016/j.apsusc.2023.157494

    Article  CAS  Google Scholar 

  41. Ding W, Zhang X, Wang Q, Jiang X, **ao L, Du H (2022) Construction of a Novel Co2P/TiO2 Z-scheme junction for efficient solar-driven photocatalytic H2 evolution. Energ Technol 10:2200059. https://doi.org/10.1002/ente.202200059

    Article  CAS  Google Scholar 

  42. Sukhadeve GK, Bandewar H, Janbandhu SY, Jayaramaiah JR, Gedam RS (2023) Photocatalytic hydrogen production, dye degradation, and antimicrobial activity by Ag-Fe co-doped TiO2 nanoparticles. J Mol Liq 369:120948. https://doi.org/10.1016/j.molliq.2022.120948

    Article  CAS  Google Scholar 

  43. Hunge YM, Yadav AA, Kang S-W, Jun Lim S, Kim H (2023) Visible light activated MoS2/ZnO composites for photocatalytic degradation of ciprofloxacin antibiotic and hydrogen production. J Photochem Photobiol A: Chem 434:114250–114298. https://doi.org/10.1016/j.jphotochem.2022.114250

    Article  CAS  Google Scholar 

  44. Piña-Pérez Y, Samaniego-Benítez E, Sierra-Uribe JH, González F, Tzompantzi F, Lartundo-Rojas L, Mantilla Á (2023) Effect of synthesis conditions on the photocatalytic behavior of ZnS-ZnO heterojunctions for the H2 generation. J Environ Chem Eng 11:109760. https://doi.org/10.1016/j.jece.2023.109760

    Article  CAS  Google Scholar 

  45. Zhou FQ, Fan JC, Xu QJ, Min YL (2017) BiVO4 nanowires decorated with CdS nanoparticles as Z-scheme photocatalyst with enhanced H2 generation. Appl Catal B 201:77–83. https://doi.org/10.1016/j.apcatb.2016.08.027

    Article  CAS  Google Scholar 

  46. Wang B, Ding Y, Deng Z, Li Z (2019) Rational design of ternary NiS/CQDs/ZnIn2S4 nanocomposites as efficient noble-metal-free photocatalyst for hydrogen evolution under visible light. Chin J Catal 40:335–342. https://doi.org/10.1016/S1872-2067(18)63159-6

    Article  Google Scholar 

  47. Subramanian Y, Dhanasekaran A, Omeiza LA, Somalu MR, Azad AK (2023) A review on heteroanionic-based materials for photocatalysis applications. Catalysts 13:173. https://doi.org/10.3390/catal13010173

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Xu or Lixin Cao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Liang, H., Xu, Q. et al. One-Step Solvothermal Synthesis of (Mn, In) (S, Se) Nanosheets with Porous Structure for Water Splitting Without Sacrificial Agents. Catal Lett 154, 2551–2561 (2024). https://doi.org/10.1007/s10562-023-04523-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04523-8

Keywords

Navigation