Log in

Nickel-Aluminium Layered Double Hydroxide Catalysed One-Pot Synthesis of Thioxo-Dihydroquinazolinones in Green Solvents

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Layered double hydroxides (LDHs) are well established inorganic nanomaterials. They are of researcher’s interest due to their anion-exchange capability, high surface-to-volume ratio, enhanced basicity due to hydroxyl anions and lewis acidity due to different metal ions present in the lattice. Their compatibility with environmental friendly solvents like water and alcohol have attracted synthetic chemists to develop green protocol in organic catalysis reactions. Interestingly, there are no reports of utilizing NiAl LDHs as a catalyst for organic transformations in greener condition. In the present study, we have utilized NiAl LDHs as a catalyst for the synthesis of thioxo-dihydroquinazolinones from isatoic anhydride, hydrazides and carbon disulphide. We have synthesized ten thioxo-dihydroquinazolinones with product yield ranging from 77 to 90%. The synthesized thioxo-dihydroquinazolinones possessing differently substituted aryl groups and heterocyclic ring could become a good precursors to discover and develop a new drug molecules. Nontoxic catalyst with both acidic and basic sites, substrate scope, environmental friendly solvents, one-pot operation, simple starting materials, good yields and reusability of NiAl LDHs catalyst up to five cycles are notable features of the present protocol.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Scheme 3

Similar content being viewed by others

References

  1. Arrabito G, Bonasera A, Prestopino G, Orsini A, Mattoccia A, Martinelli E, Pignataro B, Medaglia PG (2019) Layered double hydroxides: a toolbox for chemistry and biology. Crystals 9:361

    Article  CAS  Google Scholar 

  2. Khan FA, Sahu N (2005) Highly efficient and recyclable ruthenium-based supported catalysts. J Catal 231:438–442

    Article  CAS  Google Scholar 

  3. Luo J, Im J-H, Mayer MT, Schreier M, Nazeeruddin MK, Park N-G, Tilley SD, Fan HJ, Grätzel M (2014) Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345:1593–1596

    Article  CAS  PubMed  Google Scholar 

  4. Abderrazek K, Najoua FS, Srasra E (2016) Synthesis and characterization of [Zn–Al] LDH: study of the effect of calcination on the photocatalytic activity. Appl Clay Sci 119:229–235

    Article  CAS  Google Scholar 

  5. Ao Y, Wang D, Wang P, Wang C, Hou J, Qian J (2016) Enhanced photocatalytic properties of the 3D flower-like Mg-Al layered double hydroxides decorated with Ag2CO3 under visible light illumination. Mater Res Bull 80:23–29

    Article  CAS  Google Scholar 

  6. Dinari M, Momeni MM, Ghayeb Y (2016) Photodegradation of organic dye by ZnCrLa-layered double hydroxide as visible-light photocatalysts. J Mater Sci: Mater Electron 27:9861–9869

    CAS  Google Scholar 

  7. Timár Z, Varga G, Muráth S, Kónya Z, Kukovecz Á, Havasi V, Oszkó A, Pálinkó I, Sipos P (2017) Synthesis, characterization and photocatalytic activity of crystalline Mn(II)Cr(III)-layered double hydroxide. Catal Today 284:195–201

    Article  Google Scholar 

  8. Iguchi S, Teramura K, Hosokawa S, Tanaka T (2016) Photocatalytic conversion of CO2 in water using fluorinated layered double hydroxides as photocatalysts. Appl Catal A: Gen 521:160–167

    Article  CAS  Google Scholar 

  9. Anton Wein L, Zhang H, Urushidate K, Miyano M, Izumi Y (2018) Optimized photoreduction of CO2 exclusively into methanol utilizing liberated reaction space in layered double hydroxides comprising zinc, copper, and gallium. Appl Surf Sci 447:687–696

    Article  CAS  Google Scholar 

  10. Iguchi S, Hasegawa Y, Teramura K, Hosokawa S, Tanaka T (2016) Preparation of transition metal-containing layered double hydroxides and application to the photocatalytic conversion of CO2 in water. J CO2 Util 15:6–14

    Article  CAS  Google Scholar 

  11. Zhao H, Xu J, Liu L, Rao G, Zhao C, Li Y (2016) CO2 photoreduction with water vapor by Ti-embedded MgAl layered double hydroxides. J CO2 Util 15:15–23

    Article  CAS  Google Scholar 

  12. Tonda S, Kumar S, Bhardwaj M, Yadav P, Ogale S (2018) g-C3N4/NiAl-LDH 2D/2D hybrid heterojunction for high-performance photocatalytic reduction of CO2 into renewable fuels. ACS Appl Mater Interfaces 10:2667–2678

    Article  CAS  PubMed  Google Scholar 

  13. Li X, Liu J, Ji X, Jiang J, Ding R, Hu Y, Hu A, Huang X (2010) Ni/Al layered double hydroxide nanosheet film grown directly on Ti substrate and its application for a nonenzymatic glucose sensor. Sens Actuators B: Chem 147:241–247

    Article  CAS  Google Scholar 

  14. Yasaei M, Khakbiz M, Ghasemi E, Zamanian A (2019) Synthesis and characterization of ZnAl-NO3(-CO3) layered double hydroxide: a novel structure for intercalation and release of simvastatin. Appl Surf Sci 467–468:782–791

    Article  Google Scholar 

  15. Kura AU, Hussein MZ, Fakurazi S, Arulselvan P (2014) Layered double hydroxide nanocomposite for drug delivery systems; bio-distribution, toxicity and drug activity enhancement. Chem Cent J 8:47

    Article  PubMed  PubMed Central  Google Scholar 

  16. Barteczko N, Grymel M, Chrobok A (2023) Heterogeneous catalysts for olefin metathesis. Catal Commun 177:106662

    Article  CAS  Google Scholar 

  17. Olszówka J, Karcz R, Napruszewska BD, Duraczyńska D, Gaweł A, Bahranowski K, Serwicka EM (2017) Baeyer-Villiger oxidation of cyclohexanone with H2O2/acetonitrile over hydrotalcite-like catalysts: Effect of Mg/Al ratio on the ε-caprolactone yield. Catal Commun 100:196–201

    Article  Google Scholar 

  18. Costantino U, Curini M, Montanari F, Nocchetti M, Rosati O (2003) Hydrotalcite-like compounds as catalysts in liquid phase organic synthesis: I. Knoevenagel condensation promoted by [Ni0.73Al0.27(OH)2](CO3)0.135. J Mol Catal A: Chem 195:245–252

    Article  CAS  Google Scholar 

  19. Vijaikumar S, Dhakshinamoorthy A, Pitchumani K (2008) l-Proline anchored hydrotalcite clays: An efficient catalyst for asymmetric Michael addition. Appl Catal A: Gen 340:25–32

    Article  CAS  Google Scholar 

  20. Kondawar S, Rode C (2017) Solvent-Free Glycerol Transesterification with Propylene Carbonate to Glycerol Carbonate over a Solid Base Catalyst. Energy Fuels 31:4361–4371

    Article  CAS  Google Scholar 

  21. Khan FA, Dash J, Satapathy R, Upadhyay SK (2004) Hydrotalcite catalysis in ionic liquid medium: a recyclable reaction system for heterogeneous Knoevenagel and nitroaldol condensation. Tetrahedron Lett 45:3055–3058

    Article  CAS  Google Scholar 

  22. Narasimhamurthy KH, Chandrappa S, Sharath Kumar KS, Harsha KB, Ananda H, Rangappa KS (2014) Easy access for the synthesis of 2-aryl 2,3-dihydroquinazolin-4(1H)-ones using gem-dibromomethylarenes as synthetic aldehyde equivalent. RSC Adv 4:34479–34486

    Article  CAS  Google Scholar 

  23. Narasimhamurthy KH, Chandrappa S, Kumar KSS, Swaroop TR, Rangappa KS (2013) Synthetic Utility of Propylphosphonic Anhydride–DMSO Media: An Efficient One-pot Three-component Synthesis of 2-Arylquinolines. Chem Lett 42:1073–1075

    Article  CAS  Google Scholar 

  24. Sayahi MH, Toosibashi M, Bahmaei M, Lijan H, Ma'Mani L, Mahdavi M, Bahadorikhalili S (2022) Pd@Py2PZ@MSN as a Novel and Efficient Catalyst for C–C Bond Formation Reactions. Front Chem 10.

  25. Ghasemi N, Yavari A, Bahadorikhalili S, Moazzam A, Hosseini S, Larijani B, Iraji A, Moradi S, Mahdavi M (2022) Copper Catalyst-Supported Modified Magnetic Chitosan for the Synthesis of Novel 2-Arylthio-2,3-dihydroquinazolin-4(1H)-one Derivatives via Chan–Lam Coupling. Inorganics 10:231

    Article  CAS  Google Scholar 

  26. Rezaei Z, Asadi M, Montazer NM, Rezaeiamiri E, Bahadorikhalili S, Amini M, Amanlou M (2022) Synthesis, Molecular Docking, and Biological Evaluation of 2,3-Diphenylquinoxaline Derivatives as a Tubulin’s Colchicine Binding Site Inhibitor Based on Primary Virtual Screening. Anti-Cancer Agents Med Chem 22:2011–2025

    Article  CAS  Google Scholar 

  27. Sayahi HM, Yadollahi M, Hamad MS, Ganjali RM, Aghazadeh M, Mahdavi M, Bahadorikhalili S (2021) Bi metal-organic framework (Ce/Ni–BTC) as heterogeneous catalyst for the green synthesis of substituted chromeno[4, 3–b]quinolone under solvent free condition. Curr Org Synth 18:475–482

    Article  CAS  PubMed  Google Scholar 

  28. Zha G-F, Preetham HD, Rangappa S, Sharath Kumar KS, Girish YR, Rakesh KP, Ashrafizadeh M, Zarrabi A, Rangappa KS (2021) Benzimidazole analogues as efficient arsenals in war against methicillin-resistance staphylococcus (MRSA) and its SAR studies. Bioorg Chem 115:105175

    Article  CAS  PubMed  Google Scholar 

  29. Lucas SW, Qin RZ, Rakesh KP, Sharath Kumar KS, Qin HL (2023) Chemical and biology of sulfur fluoride exchange (SuFEx) click chemistry for drug discovery. Bioorg Chem 130:106227

    Article  Google Scholar 

  30. Badolato M, Aiello F, Neamati N (2018) 2,3-Dihydroquinazolin-4(1H)-one as a privileged scaffold in drug design. RSC Adv 8:20894–20921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Malamas MS, Millen J (1991) Quinazolineacetic acids and related analogs as aldose reductase inhibitors. J Med Chem 34:1492–1503

    Article  CAS  PubMed  Google Scholar 

  32. Salehi P, Ayyari M, Bararjanian M, Ebrahimi SN, Aliahmadi A (2014) Synthesis, antibacterial and antioxidant activity of novel 2,3-dihydroquinazolin-4(1H)-one derivatives of dehydroabietylamine diterpene. J Iran Chem Soc 11:607–613

    Article  CAS  Google Scholar 

  33. Kamal A, Bharathi EV, Reddy JS, Ramaiah MJ, Dastagiri D, Reddy MK, Viswanath A, Reddy TL, Shaik TB, Pushpavalli SNCVL, Bhadra MP (2011) Synthesis and biological evaluation of 3,5-diaryl isoxazoline/isoxazole linked 2,3-dihydroquinazolinone hybrids as anticancer agents. Eur J Med Chem 46:691–703

    Article  CAS  PubMed  Google Scholar 

  34. Wolfe JF, Rathman TL, Sleevi MC, Campbell JA, Greenwood TD (1990) Synthesis and anticonvulsant activity of some new 2-substituted 3-aryl-4(3H)-quinazolinones. J Med Chem 33:161–166

    Article  CAS  PubMed  Google Scholar 

  35. Kausar N, Roy I, Chattopadhyay D, Das AR (2016) Synthesis of 2,3-dihydroquinazolinones and quinazolin-4(3H)-ones catalyzed by graphene oxide nanosheets in an aqueous medium: “on-water” synthesis accompanied by carbocatalysis and selective C–C bond cleavage. RSC Adv 6:22320–22330

    Article  CAS  Google Scholar 

  36. Safari J, Gandomi-Ravandi S (2014) Silver decorated multi-walled carbon nanotubes as a heterogeneous catalyst in the sonication of 2-aryl-2,3-dihydroquinazolin-4(1H)-ones. RSC Adv 4:11654–11660

    Article  CAS  Google Scholar 

  37. Sharath Kumar KS, Ananda H, Rangappa S, Raghavan SC, Rangappa KS (2021) Regioselective competitive synthesis of 3,5-bis(het) aryl pyrrole-2-carboxylates/carbonitriles vs. β-thioxoketones. Tetrahedron Lett 82(12):153373

    Article  CAS  Google Scholar 

  38. Ghorbani-Choghamarani A, Norouzi M (2014) Synthesis of copper (II)-supported magnetic nanoparticle and study of its catalytic activity for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones. J Mol Catal A Chem 395:172–179

    Article  CAS  Google Scholar 

  39. Sivaguru P, Parameswaran K, Lalitha A (2016) Synthesis of novel eight-membered dibenzo[b, f][1,5]oxazocin-6-ones. Tetrahedron Lett 57:2549–2553

    Article  CAS  Google Scholar 

  40. Girish YR, Sharath Kumar KS, Thimmaiah KN, Rangappa KS, Shashikanth S (2015) ZrO2-β-cyclodextrin catalyzed synthesis of 2,4,5-trisubstituted imidazoles and 1,2-disubstituted benzimidazoles under solvent free conditions and evaluation of their antibacterial study. RSC Adv 5:75533–75546

    Article  CAS  Google Scholar 

  41. Swaroop TR, Sharath Kumar KS, Palanivelu M, Chaitanya S, Rangappa KS (2014) A catalyst-free green protocol for the synthesis of pyranopyrazoles using room temperature ionic liquid choline chloride-urea. J Heterocycl Chem 51:1866–1870

    Article  CAS  Google Scholar 

  42. Sharath Kumar KS, Swaroop TR, Harsha KB, Narasimhamurthy KH, Rangappa KS (2012) T3P®-DMSO mediated one pot cascade protocol for the synthesis of 4-thiazolidinones from alcohols. Tetrahedron Lett 53:5619–5623

    Article  CAS  Google Scholar 

  43. Lingaraju GS, Swaroop TR, Vinayaka AC, Sharath Kumar KS, Sadashiva MP, Rangappa KS (2012) An easy access to 4,5-disubstituted thiazoles via base-induced click reaction of active methylene isocyanides with methyl dithiocarboxylates. Synthesis 44:1373–1379

    Article  CAS  Google Scholar 

  44. Vartak SV, Swarup HA, Gopalakrishnan V, Gopinatha VK, Ropars V, Nambiar M, John F, Kothanahally SKS, Kumari R, Kumari N, Ray U, Radha G, Dinesh D, Pandey M, Ananda H, Karki SS, Srivastava M, Charbonnier JB, Choudhary B, Mantelingu K, Raghavan SC (2018) Autocyclized and oxidized forms of SCR7 induce cancer cell death by inhibiting nonhomologous DNA end joining in a Ligase IV dependent manner. Febs j 285:3959–3976

    Article  CAS  PubMed  Google Scholar 

  45. Jagadish S, Hemshekhar M, NaveenKumar SK, Sharath Kumar KS, Sundaram MS, Basappa GKS, Rangappa KS (2017) Novel oxolane derivative DMTD mitigates high glucose-induced erythrocyte apoptosis by regulating oxidative stress. Toxicol Appl Pharmacol 334:167–179

    Article  CAS  PubMed  Google Scholar 

  46. Ananda H, Sharath Kumar KS, Nishana M, Hegde M, Srivastava M, Byregowda R, Choudhary B, Raghavan SC, Rangappa KS (2017) Regioselective synthesis and biological studies of novel 1-aryl-3, 5-bis (het) aryl pyrazole derivatives as potential antiproliferative agents. Mol Cell Biochem 426:149–160

    Article  CAS  PubMed  Google Scholar 

  47. Verma R, Verma SK, Rakesh KP, Girish YR, Ashrafizadeh M, Sharath Kumar KS, Rangappa KS (2021) Pyrazole-based analogs as potential antibacterial agents against methicillin-resistance staphylococcus aureus (MRSA) and its SAR elucidation. Eur J Med Chem 212:113134

    Article  CAS  PubMed  Google Scholar 

  48. Ananda H, Sharath Kumar KS, Sudhanva MS, Rangappa S, Rangappa KS (2018) A trisubstituted pyrazole derivative reduces DMBA-induced mammary tumor growth in rats by inhibiting estrogen receptor-α expression. Mol Cell Biochem 449:137–144

    Article  CAS  PubMed  Google Scholar 

  49. Nirgude S, Mahadeva R, Koroth J, Kumar S, Kumar KSS, Gopalakrishnan V, Karki S, SS, Choudhary B, (2020) ST09, A novel curcumin derivative, blocks cell migration by inhibiting matrix metalloproteases in breast cancer cells and inhibits tumor progression in EAC mouse tumor models. Molecules 25:4499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ananda H, Kumar KS, Hegde M, Rangappa KS (2016) Induction of apoptosis and downregulation of ERα in DMBA-induced mammary gland tumors in Sprague-Dawley rats by synthetic 3,5-disubstituted isoxazole derivatives. Mol Cell Biochem 420:141–150

    Article  CAS  PubMed  Google Scholar 

  51. Wang X, Wang J, Xu A, Chang Y, Jia J, Jia M (2023) Effect of in situ growth of NiSe2 on NiAl layered double hydroxide on its electrocatalytic properties for methanol and urea. Int J Hydrog Energy 48:22060–22068

    Article  CAS  Google Scholar 

  52. Jagadish S, Rajeev N, NaveenKumar SK, Sharath Kumar KS, Paul M, Hegde M, Basappa SMP, Girish KS, Rangappa KS (2016) Platelet protective efficacy of 3,4,5 trisubstituted isoxazole analogue by inhibiting ROS-mediated apoptosis and platelet aggregation. Mol Cell Biochem 414:137–151

    Article  CAS  PubMed  Google Scholar 

  53. Chau N, Saegusa Y, Iwakura Y (1982) Synthesis of substituted N-(2,4-dioxo-1,2,3,4-tetrahydroquinazolinyl)benzamides and N-(2-thiono-4-oxo-1,2,3,4-tetrahydroquinazolinyl) benzamides. J Heterocyclic Chem 19:541

    Article  Google Scholar 

  54. Ibrahim SM, Abo-Kul M, Soltan MK, Helal AS (2014) Synthesis and anti-inflammatory activity of new 2-arylidenehydrazinyl-quinazolinone and 3-amino-triazolo-quinazolinone derivatives. Asian J Pharm Anal Med Chem 2:82–93

    CAS  Google Scholar 

  55. Li L, Hui KS, Hui KN, Cho Y-R (2017) Ultrathin petal-like NiAl layered double oxide/sulfide composites as an advanced electrode for high-performance asymmetric supercapacitors. J Material Chem A 5:19687–19696

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support of this work by PhD Research Start-up Foundation of Yulin University Grant (No. 20GK04 and 20GK05) is gratefully acknowledged. The authors extend their appreciation to the Researchers Supporting Project number (RSP2023R381), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

SKV: Data curation, Investigation, NAZ: Formal analysis Funding acquisition. KP: Conceptualiation, Funding acquisition, project administration. RV: Data Curation, methodology, Funding acquisition. KPR: Data Curation. IW: methodology, AAA: Revision experiments. KSSK: Conceptualiation, Funding acquisition, writing – original draft, Writing – review & editing, project administration.

Corresponding authors

Correspondence to K. Pramoda or Kothanahally S. Sharath Kumar.

Ethics declarations

Conflict of interest

Authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 928 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, S.K., Al-Zaqri, N., Verma, R. et al. Nickel-Aluminium Layered Double Hydroxide Catalysed One-Pot Synthesis of Thioxo-Dihydroquinazolinones in Green Solvents. Catal Lett 154, 3035–3045 (2024). https://doi.org/10.1007/s10562-023-04497-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04497-7

Keywords

Navigation