Log in

Enzymatic Hydrolysis of Waste Cooking Oil by Lipase Catalysis: Simplex Mixture Design Optimization

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A growing generation of waste cooking oil (WCO) and its inappropriate disposal has led to the worsening of serious environmental problems. Thus, such a massive amount of WCO generated by household consumption and the food industry encourages the development of new technologies for reusing it to produce products of high economic value. The use of lipases in enzymatic hydrolysis of WCO allows employing the free fatty acids (FFA) and glycerol in the production of various bioproducts in oleochemical industries. Enzymatic hydrolysis offers advantages if compared to conventional processes of FFA production (Colgate-Emery), as it can operate under milder pressure and temperature conditions and high substrate specificity, resulting in high purity products and reduced by-product formation. Therefore, a simultaneous use of three different types of lipases in WCO hydrolysis was evaluated. For such a purpose, a simplex centroid mixture design (SMD) was used to model the influence of lipase composition on hydrolysis yield. Three commercial lipases were used: Burkholderia cepacia (LBC), Rhizopus oryzae (LRO) and porcine pancreas (LPP). Results reveal that high reaction yields of approximately 97% hydrolysis were achieved. SMD provided optimal conditions for lipase mixtures and higher hydrolysis yield, resulting in 15% LPP lipase and 85% LBC.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mohamed RKMH, Renendran C, Yacob P (2012) A study on turnover intention in fast food industry: employees’ fit to the organizational culture and the important of their commitment. 9–42

  2. de Araújo CDM, de Andrade CC, de Souza E, Silva E, Dupas FA (2013) Biodiesel production from used cooking oil: a review. Renew Sustain Energy Rev 27:445–452. https://doi.org/10.1016/j.rser.2013.06.014

    Article  CAS  Google Scholar 

  3. Montebelo N di P, Araújo WMC, Borgo LA, Botelho RBA (2007) ALQUIMIA DOS ALIMENTOS, 3rd ed. Editora Senac, Brasília

  4. Barbosa MS, Freire CCC, Almeida LC et al (2019) Optimization of the enzymatic hydrolysis of Moringa oleifera Lam oil using molecular docking analysis for fatty acid specificity. Biotechnol Appl Biochem 66:823–832. https://doi.org/10.1002/bab.1793

    Article  CAS  PubMed  Google Scholar 

  5. Pinto-Coelho RM (2009) Reciclagem e desenvolvimento sustentável no Brasil. Belo Horizonte: Recóleo Coleta e Reciclagem de Óleos, pp 241–282, 2009, 1st edn. Recóleo, Belo Horizonte

  6. Scheffer D, Simonetto E Descarte do óleo de cozinha: uma análise dos procedimentos nas maiores cidades do Rio Grande do Sul. In: FÓRUM INTERNACIONAL ECOINOVAR, 4, 2015, Santa Maria/RS. Anais Santa Maria/RS. 2015. p.11

  7. de Junqueira WBC (2014) Desempenho de caixa de gordura empregada no tratamento preliminar dos efluentes de restaurante universitário. Federal University of Lavras, Lavras, pp 1–218

    Google Scholar 

  8. dos Santos LK, Hatanaka RR, de Oliveira JE, Flumignan DL (2017) Experimental factorial design on hydroesterification of waste cooking oil by subcritical conditions for biodiesel production. Renewable Energy 114:574–580. https://doi.org/10.1016/j.renene.2017.07.066

    Article  CAS  Google Scholar 

  9. Costa MJ, Silva MRL, Ferreira EEA et al (2020) Enzymatic biodiesel production by hydroesterification using waste cooking oil as feedstock. Chem Eng Process. https://doi.org/10.1016/j.cep.2020.108131

    Article  Google Scholar 

  10. Ramos LP, Silva FR, Mangrich AS, Cordeiro CS (2011) Tecnologias de produção de biodiesel. Rev Virtual Química 3:385–405

    CAS  Google Scholar 

  11. Aguieiras ECG, Cavalcanti-Oliveira ED, Freire DMG (2015) Current status and new developments of biodiesel production using fungal lipases. Fuel 159:52–67. https://doi.org/10.1016/j.fuel.2015.06.064

    Article  CAS  Google Scholar 

  12. Cavalcante FTT, Neto FS, de Aguiar R, Falcão I et al (2021) Opportunities for improving biodiesel production via lipase catalysis. Fuel 288:119577. https://doi.org/10.1016/j.fuel.2020.119577

    Article  CAS  Google Scholar 

  13. Arana-Peña S, Carballares D, Corberan VC, Fernandez-Lafuente R (2020) Multi-combilipases: Co-immobilizing lipases with very different stabilities combining immobilization via interfacial activation and ion exchange. The reuse of the most stable co-immobilized enzymes after inactivation of the least stable ones. Catalysts 10:1–23. https://doi.org/10.3390/catal10101207

    Article  CAS  Google Scholar 

  14. Qiao H, Zhang F, Guan W et al (2017) Optimisation of combi-lipases from Aspergillus niger for the synergistic and efficient hydrolysis of soybean oil. Anim Sci J 88:772–780. https://doi.org/10.1111/asj.12718

    Article  CAS  PubMed  Google Scholar 

  15. Rodrigues RC, Ayub MAZ (2011) Effects of the combined use of thermomyces lanuginosus and rhizomucor miehei lipases for the transesterification and hydrolysis of soybean oil. Process Biochem 46:682–688. https://doi.org/10.1016/j.procbio.2010.11.013

    Article  CAS  Google Scholar 

  16. Alves JS, Vieira NS, Cunha AS et al (2014) Combi-lipase for heterogeneous substrates: a new approach for hydrolysis of soybean oil using mixtures of biocatalysts. RSC Adv 4:6863–6868. https://doi.org/10.1039/c3ra45969a

    Article  CAS  Google Scholar 

  17. Huang J, Zhao Q, Bu W et al (2020) Ultrasound-assisted hydrolysis of lard for free fatty acids catalyzed by combined two lipases in aqueous medium. Bioengineered 11:241–250. https://doi.org/10.1080/21655979.2020.1729678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wancura CJH, Tres MV, Jahn SL, Oliveira JV (2020) Lipases in liquid formulation for biodiesel production: current status and challenges. Biotechnol Appl Biochem 67:648–667. https://doi.org/10.1002/bab.1835

    Article  CAS  Google Scholar 

  19. de Freitas VO, Matte CR, Poppe JK et al (2019) Ultrasound-assisted transesterification of soybean oil using combi-lipase biocatalysts. Braz J Chem Eng 36:995–1005. https://doi.org/10.1590/0104-6632.20190362s20180455

    Article  CAS  Google Scholar 

  20. Poppe JK, Garcia-Galan C, Matte CR et al (2013) Optimization of synthesis of fatty acid methyl esters catalyzed by lipase B from Candida antarctica immobilized on hydrophobic supports. J Mol Catal B 94:51–56. https://doi.org/10.1016/j.molcatb.2013.05.010

    Article  CAS  Google Scholar 

  21. Poppe JK, Matte CR, Carmo Ruaro Peralba M et al (2015) Optimization of ethyl ester production from olive and palm oils ***using mixtures of immobilized lipases. Appl Catal A 490:50–56. https://doi.org/10.1016/j.apcata.2014.10.050

    Article  CAS  Google Scholar 

  22. Araki CA, Marcucci SMP, da Silva LS et al (2018) Effects of a combination of lipases immobilised on desilicated and thiol-modified ZSM-5 for the synthesis of ethyl esters from macauba pulp oil in a solvent-free system. Appl Catal A 562:241–249. https://doi.org/10.1016/j.apcata.2018.06.007

    Article  CAS  Google Scholar 

  23. Menchaca-Méndez A, Zapotecas-Martínez S, García-Velázquez LM, Coello Coello CA (2021) Uniform mixture design via evolutionary multi-objective optimization. Swarm Evol Comput. https://doi.org/10.1016/j.swevo.2021.100979

    Article  Google Scholar 

  24. Montgomery DC (2013) Design and analysis of experiments, 8th edn. Wiley, New York

    Google Scholar 

  25. Marcheafave GG, Tormena CD, Pauli ED et al (2019) Experimental mixture design solvent effects on pigment extraction and antioxidant activity from Coffea arabica L. leaves. Microchem J 146:713–721. https://doi.org/10.1016/j.microc.2019.01.073

    Article  CAS  Google Scholar 

  26. Viegas IMA, Barradas Filho AO, Marques EP et al (2018) Oxidative stability of biodiesel by mixture design and a four-component diagram. Fuel 219:389–398. https://doi.org/10.1016/j.fuel.2018.01.124

    Article  CAS  Google Scholar 

  27. Jiao D, Shi C, Yuan Q et al (2018) Mixture design of concrete using simplex centroid design method. Cement Concr Compos 89:76–88. https://doi.org/10.1016/j.cemconcomp.2018.03.001

    Article  CAS  Google Scholar 

  28. Bredda EH, da Silva AF, Silva MB, da Rós PCM (2020) Mixture design as a potential tool in modeling the effect of light wavelength on Dunaliella salina cultivation: an alternative solution to increase microalgae lipid productivity for biodiesel production. Prep Biochem Biotechnol 50:379–389. https://doi.org/10.1080/10826068.2019.1697936

    Article  CAS  PubMed  Google Scholar 

  29. AOCS (2004) Society Official Methods and Recommended Practices of the AOCS, 5th edn. AOCS Press, Champaign

    Google Scholar 

  30. da Rós PCM, Silva CSP, Silva-Stenico ME et al (2013) Assessment of chemical and physico-chemical properties of cyanobacterial lipids for biodiesel production. Mar Drugs 11:2365–2381. https://doi.org/10.3390/md11072365

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fernandez-Lorente G, Fernández-Lafuente R, Palomo JM et al (2001) Biocatalyst engineering exerts a dramatic effect on selectivity of hydrolysis catalyzed by immobilized lipases in aqueous medium. J Mol Catal B 11:649–656. https://doi.org/10.1016/S1381-1177(00)00080-1

    Article  CAS  Google Scholar 

  32. da Rós PCM, Menezes TK, Bredda EH et al (2020) Microalgae as a feedstock for sustainable fatty acids: factorial design study. Chem Eng Technol 43:119–125. https://doi.org/10.1002/ceat.201800643

    Article  CAS  Google Scholar 

  33. Fernandez AJ, Bredda EH, da Rós PCM, Pereira EB (2021) Sustainable enzymatic approach for the production of essential fatty acid based on coffee oil hydrolysis. Catal Lett. https://doi.org/10.1007/s10562-021-03649-x

    Article  Google Scholar 

  34. Knothe G (2002) Structure indices in FA chemistry. How relevant is the iodine value? J Am Oil Chem Soc 79:847–854. https://doi.org/10.1007/s11746-002-0569-4

    Article  CAS  Google Scholar 

  35. Fernandes AJ, Bredda EH, da Rós PCM, Pereira EB (2022) Sustainable enzymatic approach for the production of essential fatty acid based on coffee oil hydrolysis. Catal Lett 152:452–459. https://doi.org/10.1007/s10562-021-03649-x

    Article  CAS  Google Scholar 

  36. Carvalho AKF, da Rós PCM, Teixeira LF et al (2013) Assessing the potential of non-edible oils and residual fat to be used as a feedstock source in the enzymatic ethanolysis reaction. Ind Crops Prod 50:485–493. https://doi.org/10.1016/j.indcrop.2013.07.040

    Article  CAS  Google Scholar 

  37. Arana-Peña S, Carballares D, Berenguer-Murcia Á et al (2020) One pot use of combilipases for full modification of oils and fats: multifunctional and heterogeneous substrates. Catalysts 10:605. https://doi.org/10.3390/catal10060605

    Article  CAS  Google Scholar 

  38. Park YK, Pastore GM, de Almeida MM (1988) Hydrolysis of soybean oil by a combined lipase system. J Am Oil Chem Soc 65:252–254. https://doi.org/10.1007/BF02636410

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work was supported the Coordination for the Improvement of Higher Education Personnel (CAPES)—Financing Code 001. The authors also thank the Fundação de Amparo à Pesquisa do Estado de Minas Gerais—FAPEMIG for granting the master's degree scholarship to Grazielle Pereira and CNPq for the financial support (Process Number 409346/2018-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrícia C. M. Da Rós.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, G.P.R., Correia, T.B.A., Reis, W.S.M. et al. Enzymatic Hydrolysis of Waste Cooking Oil by Lipase Catalysis: Simplex Mixture Design Optimization. Catal Lett 153, 689–697 (2023). https://doi.org/10.1007/s10562-022-04025-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04025-z

Keywords

Navigation