Log in

Biodegradation of Endocrine Disrupting Chemicals with Laccase Isozymes from Recombinant Pichia pastori

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this paper, five recombinant strains: GS115-LacA, GS115-LacB, GS115-LacC, KM71H-Lcc1 and GS115-Lcc2 were selected to produce laccase isozymes with high activities, which reached 13,001 U/L, 10,254 U/L, 11,495 U/L, 9924 U/L and 10,031 U/L on 15th, respectively. Then, we investigated the specificity of several recombinant laccase isozymes for the degradation of endocrine disrupting chemicals (phenolic compounds). The results showed that LacB had the most efficient in degradation of bisphenol A and octyl phenol, while Lcc1 degraded 4-n-octylphenol, gossypol and hydroquinone better. Finally, the effects of degradation conditions were optimized, which shown that the degradation rates of phenolic compounds increased with the optimum temperature and pH by different laccases were different, which were closely related to their enzymatic properties. Under the optimum reaction conditions, the degradation rate of bisphenol A, gossypol, 4-n-octylphenol, octyl phenol and hydroquinone were 95.4%, 93.2%, 89.6%, 71.0% and 91.9% at 8 h, 8 h, 12 h, 24 h and 1 h, respectively. Furthermore, the recombinant laccases were used to degrade phenolic compounds in several laccase/mediator systems, which ABTS and vanillin showed most enhancement on degradation rates and reduction of degradation times. In LacB-ABTS and Lcc1-guaiacol/vanillin systems, the degradation rates of five phenolic compounds reached the maximum with totally 100% within 4 h. All of the results open up promising perspectives for the degradation and oxidative biotransformation of typical phenolic pollutants in the environment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li YX, Yin S, Yang Y et al (2020) J AOAC Int 103(2):348–364

    Article  PubMed  Google Scholar 

  2. Li ZH, Zhang WQ, Shan BQ (2019) Environ Pollut 250:1010–1018

    Article  CAS  PubMed  Google Scholar 

  3. Serra H, Scholze M, Altenburger R et al (2019) Chemosphere 227:334–344

    Article  CAS  PubMed  Google Scholar 

  4. Huggins C, Pollice L (1958) J Exp Med 107(1):13–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Müller AK, Markert N, Leser K et al (2019) Environ Pollut 257(4):113636

    PubMed  Google Scholar 

  6. Fitz-Binder C, Bechtold T (2019) Color Technol 135(1):32–39

    Article  CAS  Google Scholar 

  7. Ge XZ, **g LZ, Zhao K et al (2020) Food Chem 335(4):127655

    PubMed  Google Scholar 

  8. Knapczyk-Stwora K, Nynca A, Ciereszko RE et al (2020) Theriogenology 153(1):102–111

    Article  CAS  PubMed  Google Scholar 

  9. Wu FF, Zhu Y, Zhao XY et al (2020) J Chromatogr A 1635:461765

    Article  PubMed  CAS  Google Scholar 

  10. Zhang KW, Sai YE, Guang-Shui N et al (2008) Chin J Anal Lab 27(8):62–66

    CAS  Google Scholar 

  11. Takakura R, Koyama K, Kuwata M et al (2020) Org Biomol Chem 18(34):6594–6597

    Article  CAS  PubMed  Google Scholar 

  12. Huang YQ, Wong CKC, Zheng JS et al (2012) Environ Int 42:91–99

    Article  CAS  PubMed  Google Scholar 

  13. Santos JEP, Villasenor M, Robinson PH et al (2003) J Dairy Sci 86(3):892–905

    Article  CAS  PubMed  Google Scholar 

  14. Joseph L, Zaib Q, Khan IA et al (2011) Water Res 45(13):4056–4068

    Article  CAS  PubMed  Google Scholar 

  15. Loffredo E, Castellana G, Senesi N (2014) Environ Sci Pollut Res Int 21(4):2654–2662

    Article  CAS  PubMed  Google Scholar 

  16. Yang HF, He PP, Yin YC et al (2021) Bioproc Biosyst Eng 44:2061–2073

    Article  CAS  Google Scholar 

  17. Toyama T, Kainuma Y, Kikuchi S et al (2012) Water Sci Technol 66(10):2202–2208

    Article  CAS  PubMed  Google Scholar 

  18. Farnet AM, Chevremont AC, Gil G et al (2011) Chemosphere 82(2):284–289

    Article  CAS  PubMed  Google Scholar 

  19. Kapich AN, Galkin S, Hatakka A (2009) Biocatal Biotransform 25(2–4):350–358

    Google Scholar 

  20. Morsi R, Bilal M, Iqbal H et al (2020) Sci Total Environ 714:136572

    Article  CAS  PubMed  Google Scholar 

  21. Yang SC, Yang J, Wang T et al (2020) Nanoscale 12(14):7976–7985

    Article  CAS  PubMed  Google Scholar 

  22. Yang XL, Wu YY, Zhang Y et al (2020) Front Microbiol 11:241

    Article  PubMed  PubMed Central  Google Scholar 

  23. Aracri E, Fillat A, Colom JF et al (2010) Bioresour Technol 101(21):8211–8216

    Article  CAS  PubMed  Google Scholar 

  24. Zhou WT, Zhang WX, Cai YP (2021) Chem Eng J 403:126272

    Article  CAS  Google Scholar 

  25. Wang H, Deng W, Shen MH et al (2021) J Hazard Mater 408:124775

    Article  CAS  PubMed  Google Scholar 

  26. Li Q, Chai CS, Du YT et al (2021) Catal Lett 151(3):1–14

    Google Scholar 

  27. Nicolucci C, Rossi S, Menale C et al (2011) Biodegradation 22(3):673–683

    Article  CAS  PubMed  Google Scholar 

  28. Wang L, Chen M, Luo XC et al (2020) Front Chem 8:583176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. He LY, Wang GB, Cao FL et al (2011) Adv Mat Res 236–238:1039–1044

    Google Scholar 

  30. Li Q, Pei JJ, Zhao LG et al (2014) Appl Biochem Micro 50(2):140–147

    Article  CAS  Google Scholar 

  31. Li Q, Ge L, Cai JL et al (2014) J Microbiol Biotechnol 24(4):545–555

    Article  CAS  PubMed  Google Scholar 

  32. Childs RE, Bardsley WG (1975) Biochem J 145(1):93–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bradford MM (1976) Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  34. Bailey MJ, Adamitsch B, Rautio J et al (2007) Enzyme Microb Technol 41(4):484–491

    Article  CAS  Google Scholar 

  35. Danilo R, Chiara CM, Maurizio R et al (2010) FEMS Yeast Res 6:892–902

    Google Scholar 

  36. Mekmouche Y, Zhou SM, Cusano AM et al (2013) J Biosci Bioeng 117(1):25–27

    Article  PubMed  CAS  Google Scholar 

  37. Martin AIV, Vina-Gonzalez J, Santos-Moriano P et al (2016) J Mol Catal B Enzym 134:323–330

    Article  CAS  Google Scholar 

  38. **a J, Wang Q, Luo Q et al (2019) Process Biochem 78:33–41

    Article  CAS  Google Scholar 

  39. Zhang WH, Potter KJH, Plantz BA et al (2003) J Ind Microbiol Biot 30(4):210–215

    Article  CAS  Google Scholar 

  40. Aza P, Salas F, Molpeceres G et al (2021) Int J Mol Sci 22(3):1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. You LF, Liu ZM, Lin JF et al (2014) J Basic Microb 54(S1):134–141

    Article  CAS  Google Scholar 

  42. Savinova OS, Moiseenko KV, Vavilova EA et al (2019) Front Microbiol 10:152

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang CL, Zhao M, Wei XD et al (2011) Adv Mater Res 113–116:226–230

    Google Scholar 

  44. Zhang H, Hong YZ, **ao YZ et al (2006) Appl Microbiol Biot 73(1):89–94

    Article  CAS  Google Scholar 

  45. More SS, Renuka PS, Pruthvi K et al (2011) Jpn J Antibiot 2011(1):248735

    Google Scholar 

  46. Upadhyay P, Shrivastava R, Agrawal PK (2016) 3 Biotech 6(1):15

    Article  PubMed  PubMed Central  Google Scholar 

  47. Navada KK, Kulal A (2020) Biotechnol Lett 43:613–626

    Article  PubMed  CAS  Google Scholar 

  48. Li Q, Zhao DX, Liu SP et al (2014) J Nan**g For Univ 38(3):93–97

    Google Scholar 

  49. Kersten PJ, Kalyanaraman B, Hammel KE et al (1990) Biochem J 268(2):475–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. **e HF, Li Q, Wang MM et al (2013) J Microbiol Biotechnol 23(6):864–871

    Article  CAS  PubMed  Google Scholar 

  51. Jiang YP, Cai JL, Pei JJ et al (2021) ACS Omega 6(14):9741–9749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kudanga T, Nyanhongo GS, Guebitz GM et al (2011) Enzyme Microb Tech 48(3):195–208

    Article  CAS  Google Scholar 

  53. Ren SY, Wu ZH, Guo QX et al (2015) Catal Lett 145(2):712–714

    Article  CAS  Google Scholar 

  54. Ana F, Sudipta D, Alina MB et al (2017) Beilstein J Org Chem 13(1):1439–1445

    Google Scholar 

  55. Habimana P, Gao J, Mwizerwa JP et al (2021) ACS Omega 6(4):2777–2789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mohapatra DP, Brar SK, Tyagi RD et al (2010) Chem Eng J 163:273–283

    Article  CAS  Google Scholar 

  57. Gassara F, Brar SK, Verma M et al (2013) Chemosphere 92:1356–1360

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the International Advanced Forestry Science and Technology Project Imported by State Forestry Administration (Grant No. 2011-4-15, 2010-4-19) and Jiangsu “333” Project of Cultivation of High-level Talents (Grant No. BRA2015317).

Funding

Jiangsu “333” Project of Cultivation of High-level Talents,BRA2015317, the International Advanced Forestry Science and Technology Project Imported by State Forestry Administration, 2011-4-15, 2010-4-19

Author information

Authors and Affiliations

Authors

Contributions

Author contributions were as follows: QL and LZ conceived and designed the experiments; QL and CC performed all the experiments and analyzed the data. QL wrote and revised the paper. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Linguo Zhao.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 530 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Chai, C. & Zhao, L. Biodegradation of Endocrine Disrupting Chemicals with Laccase Isozymes from Recombinant Pichia pastori. Catal Lett 152, 2625–2636 (2022). https://doi.org/10.1007/s10562-021-03870-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03870-8

Keywords

Navigation