Log in

Chemical Kinetics of Parallel Consuming Processes for Photogenerated Charges at the Semiconductor Surfaces: A Theoretical Classical Calculation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

For artificial photosynthesis, the lower photon conversion efficiencies of the photogenerated charges hinder the practical application in solar energy harvesting. The challenges are commonly ascribed to the sluggish surface redox reactions and significant surface charge recombination. Although there are several transient techniques applied for monitoring the surface charges evolution, how the experimental spectroscopy data is interpreted still involves ambiguous explanations on the complicated reactions. Here, we firstly developed a parallel 1st–nth order reaction model, which could be applied to quantitatively analyze the surface charge reactions. The microkinetic calculations were carried out by varying the reaction order, rate constants as well as the contribution of the competitive ones. Interestingly, the simplified reaction model can successfully demonstrate the charges react rate changes, which can be further applied in mechanism study complementary with those experimental methods.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are not publicly available due financial support, but are available from the corresponding author on reasonable request.

References

  1. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  PubMed  CAS  Google Scholar 

  2. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110:6446–6473

    Article  PubMed  CAS  Google Scholar 

  3. Wang Q, Domen K (2020) Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem Rev 120:919–985

    Article  PubMed  CAS  Google Scholar 

  4. Wang Z, Li C, Domen K (2019) Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem Soc Rev 48:2109–2125

    Article  PubMed  CAS  Google Scholar 

  5. Lewis NS (2016) Research Opportunities to Advance Solar Energy Utilization. Science 351:aad1920

    Article  PubMed  CAS  Google Scholar 

  6. Yang X, Wang D (2017) Chapter two—photophysics and photochemistry at the semiconductor/electrolyte interface for solar water splitting. In: Mi Z, Wang L, Jagadish C (eds) Semiconductors and semimetals, vol 97. Elsevier, Amsterdam, pp 47–80. https://doi.org/10.1016/bs.semsem.2017.03.001

    Chapter  Google Scholar 

  7. Yang X, Wang D (2018) Photocatalysis: from fundamental principles to materials and applications. ACS Appl Energy Mater 1:6657–6693

    Article  CAS  Google Scholar 

  8. Kafizas A, Ma Y, Pastor E, Pendlebury SR, Mesa C, Francàs L, Le Formal F, Noor N, Ling M, Sotelo-Vazquez C, Carmalt CJ, Parkin IP, Durrant JR (2017) Water oxidation kinetics of accumulated holes on the surface of a TiO2 photoanode: a rate law analysis. ACS Catal 7:4896–4903

    Article  CAS  Google Scholar 

  9. Zhang P, Wang T, Gong J (2018) Current mechanistic understanding of surface reactions over water-splitting photocatalysts. Chem 4:223–245

    Article  CAS  Google Scholar 

  10. Suen N-T, Hung S-F, Quan Q, Zhang N, Xu Y-J, Chen HM (2017) Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev 46:337–365

    Article  PubMed  CAS  Google Scholar 

  11. Takata T, Jiang J, Sakata Y, Nakabayashi M, Shibata N, Nandal V, Seki K, Hisatomi T, Domen K (2020) Photocatalytic water splitting with A quantum efficiency of almost unity. Nature 581:411–414

    Article  PubMed  CAS  Google Scholar 

  12. Mesa CA, Francàs L, Yang KR, Garrido-Barros P, Pastor E, Ma Y, Kafizas A, Rosser TE, Mayer MT, Reisner E, Grätzel M, Batista VS, Durrant JR (2020) Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT. Nat Chem 12:82–89

    Article  PubMed  CAS  Google Scholar 

  13. Zhang Y, Zhang H, Liu A, Chen C, Song W, Zhao J (2018) Rate-limiting O-O bond formation pathways for water oxidation on hematite photoanode. J Am Chem Soc 140:3264–3269

    Article  PubMed  CAS  Google Scholar 

  14. Chatman S, Zarzycki P, Rosso KM (2015) Spontaneous water oxidation at hematite (α-Fe2O3) crystal faces. ACS Appl Mater Interfaces 7:1550–1559

    Article  PubMed  CAS  Google Scholar 

  15. Li J, Wan W, Triana CA, Chen H, Zhao Y, Mavrokefalos CK, Patzke GR (2021) Reaction kinetics and interplay of two different surface states on hematite photoanodes for water oxidation. Nat Commun 12:255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Zhang H, Liu D, Ren S, Zhang H (2017) Kinetic studies of direct blue photodegradation over flower-like TiO2. Res Chem Intermed 43:1529–1542

    Article  CAS  Google Scholar 

  17. Guo H, Ke Y, Wang D, Lin K, Shen R, Chen J, Weng W (2013) Efficient adsorption and photocatalytic degradation of congo red onto hydrothermally synthesized nis nanoparticles. J Nanopart Res 15:1475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kosaka T, Teduka Y, Ogura T, Zhou Y, Hisatomi T, Nishiyama H, Domen K, Takahashi Y, Onishi H (2020) Transient kinetics of O2 evolution in photocatalytic water-splitting reaction. ACS Catal 10:13159–13164

    Article  CAS  Google Scholar 

  19. Ollis DF (2005) Kinetics of liquid phase photocatalyzed reactions: an illuminating approach. J Phys Chem B 109:2439–2444

    Article  PubMed  CAS  Google Scholar 

  20. Le Formal F, Pastor E, Tilley SD, Mesa CA, Pendlebury SR, Grätzel M, Durrant JR (2015) Rate law analysis of water oxidation on a hematite surface. J Am Chem Soc 137:6629–6637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Ma Y, Mesa CA, Pastor E, Kafizas A, Francàs L, Le Formal F, Pendlebury SR, Durrant JR (2016) Rate law analysis of water oxidation and hole scavenging on a BiVO4 photoanode. ACS Energy Lett 1:618–623

    Article  CAS  Google Scholar 

  22. Corby S, Pastor E, Dong Y, Zheng X, Francàs L, Sachs M, Selim S, Kafizas A, Bakulin AA, Durrant JR (2019) Charge separation, band-bending, and recombination in WO3 photoanodes. J Phys Chem Lett 10:5395–5401

    Article  PubMed  CAS  Google Scholar 

  23. Mesa CA, Rao RR, Francas L, Corby S, Durrant JR (2020) Reply to: questioning the rate law in the analysis of water oxidation catalysis on haematite photoanodes. Nat Chem 12:1099–1101

    Article  PubMed  CAS  Google Scholar 

  24. Zhang S, Leng W (2020) Questioning the rate law in the analysis of water oxidation catalysis on haematite photoanodes. Nat Chem 12:1097–1098

    Article  PubMed  CAS  Google Scholar 

  25. Gamelin DR (2012) Catalyst or spectator? Nat Chem 4:965–967

    Article  PubMed  CAS  Google Scholar 

  26. Li P, Chen X, He H, Zhou X, Zhou Y, Zou Z (2018) Polyhedral 30-faceted BiVO4 microcrystals predominantly enclosed by high-index planes promoting photocatalytic water-splitting activity. Adv Mater 30:1703119

    Article  CAS  Google Scholar 

  27. Wang S, Liu G, Wang L (2019) Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting. Chem Rev 119:5192–5247

    Article  PubMed  CAS  Google Scholar 

  28. Wang D, Sheng T, Chen J, Wang H-F, Hu P (2018) Identifying the key obstacle in photocatalytic oxygen evolution on rutile TiO2. Nat Catal 1:291–299

    Article  CAS  Google Scholar 

  29. Ouhbi H, Aschauer U (2019) Water oxidation catalysis on reconstructed NaTaO3 (001) surfaces. J Mater Chem A 7:16770–16776

    Article  CAS  Google Scholar 

  30. Choi JY, Jeong D, Lee SJ, Kang D-g, Kim SK, Nam KM, Song H (2017) Engineering reaction kinetics by tailoring the metal tips of metal-semiconductor nanodumbbells. Nano Lett 17:5688–5694

    Article  PubMed  CAS  Google Scholar 

  31. Ardagh MA, Shetty M, Kuznetsov A, Zhang Q, Christopher P, Vlachos DG, Abdelrahman OA, Dauenhauer PJ (2020) Catalytic resonance theory: parallel reaction pathway control. Chem Sci 11:3501–3510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Mesa CA, Kafizas A, Francas L, Pendlebury SR, Pastor E, Ma YM, Le Formal F, Mayer MT, Gratzel M, Durrant JR (2017) Kinetics of photoelectrochemical oxidation of methanol on hematite photoanodes. J Am Chem Soc 139:11537–11543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Zhang S, Zhao Y, Shi R, Zhou C, Waterhouse GIN, Wang Z, Weng Y, Zhang T (2021) Sub-3 nm ultrafine Cu2O for visible light driven nitrogen fixation. Angew Chem Int Ed 60:2554–2560

    Article  CAS  Google Scholar 

  34. Katoh R, Furube A, Yamanaka K-i, Morikawa T (2010) Charge separation and trap** in N-doped TiO2 photocatalysts: a time-resolved microwave conductivity study. J Phys Chem Lett 1:3261–3265

    Article  CAS  Google Scholar 

  35. Sandberg OJ, Tvingstedt K, Meredith P, Armin A (2019) Theoretical perspective on transient photovoltage and charge extraction techniques. J Phys Chem C 123:14261–14271

    Article  CAS  Google Scholar 

  36. Li S, Hou L, Zhang L, Chen L, Lin Y, Wang D, **e T (2015) Direct evidence of the efficient hole collection process of the CoOx cocatalyst for photocatalytic reactions: a surface photovoltage study. J Mater Chem A 3:17820–17826

    Article  CAS  Google Scholar 

  37. Bhosale SS, Kharade AK, Jokar E, Fathi A, Chang S-m, Diau EW-G (2019) Mechanism of photocatalytic CO2 reduction by bismuth-based perovskite nanocrystals at the gas-solid interface. J Am Chem Soc 141:20434–20442

    Article  PubMed  CAS  Google Scholar 

  38. Bian Z, Tachikawa T, Kim W, Choi W, Majima T (2012) Superior electron transport and photocatalytic abilities of metal-nanoparticle-loaded TiO2 superstructures. J Phys Chem C 116:25444–25453

    Article  CAS  Google Scholar 

  39. Elbanna O, Fujitsuka M, Kim S, Majima T (2018) Charge carrier dynamics in TiO2 mesocrystals with oxygen vacancies for photocatalytic hydrogen generation under solar light irradiation. J Phys Chem C 122:15163–15170

    Article  CAS  Google Scholar 

  40. Lu K, Lei Y, Qi R, Liu J, Yang X, Jia Z, Liu R, ** for efficient ITO/perovskite junction solar cells. J Mater Chem A 5:25211–25219

    Article  CAS  Google Scholar 

  41. Li L, Yang X, Lei Y, Yu H, Yang Z, Zheng Z, Wang D (2018) Ultrathin Fe-NiO nanosheets as catalytic charge reservoirs for a planar mo-doped BiVO4 photoanode. Chem Sci 9:8860–8870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Le Formal F, Pendlebury SR, Cornuz M, Tilley SD, Grätzel M, Durrant JR (2014) Back electron-hole recombination in hematite photoanodes for water splitting. J Am Chem Soc 136:2564–2574

    Article  PubMed  CAS  Google Scholar 

  43. Schneider J, Bahnemann DW (2013) Undesired role of sacrificial reagents in photocatalysis. J Phys Chem Lett 4:3479–3483

    Article  CAS  Google Scholar 

  44. Upul Wijayantha KG, Saremi-Yarahmadi S, Peter LM (2011) Kinetics of oxygen evolution at a-Fe2O3 photoanodes: a study by photoelectrochemical impedance spectroscopy. Phys Chem Chem Phys 13:5264–5270

    Article  PubMed  CAS  Google Scholar 

  45. Thorne JE, Jang J-W, Liu EY, Wang D (2016) Understanding the origin of photoelectrode performance enhancement by probing surface kinetics. Chem Sci 7:3347–3354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Galland C, Ghosh Y, Steinbrück A, Sykora M, Hollingsworth JA, Klimov VI, Htoon H (2011) Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots. Nature 479:203–207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Tang L, Ji R, Li X, Teng KS, Lau SP (2013) Energy-level structure of nitrogen-doped graphene quantum dots. J Mater Chem C 1:4908–4915

    Article  CAS  Google Scholar 

  48. Yang X, Wang Y, Li CM, Wang D (2021) Mechanisms of water oxidation on heterogeneous catalyst surfaces. Nano Res. https://doi.org/10.1007/s12274-12021-13607-12275

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is financially supported from National Natural Science Foundation of China (Project. Nos. 61504117, 52072327, 21673200 and U1604121), Natural Science Foundation of Jiangsu Province (BK20180103).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to **aogang Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supporting Information

The Supporting Information is available free of charge on at DOI: The linear relationship of ln(Qexc0/Qsep) vs time and (Qexc0/Qsep)n−1 ~ t curves (PDF).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 494 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Hu, J., Qu, J. et al. Chemical Kinetics of Parallel Consuming Processes for Photogenerated Charges at the Semiconductor Surfaces: A Theoretical Classical Calculation. Catal Lett 152, 2470–2479 (2022). https://doi.org/10.1007/s10562-021-03832-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03832-0

Keywords

Navigation