Log in

Heterogeneous Aza-Michael Addition Reaction by the Copper-Based Metal–Organic Framework (CuBTC)

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The copper benzene-1, 3, 5-tricarboxylate metal–organic framework (CuBTC) was found to be an effective heterogeneous catalyst for the aza-Michael addition reaction of the four types of amines to electron deficient alkenes at room temperature. The catalytic protocol showed high product yields and outstanding chemo selectivity. The cyclic amines (piperidine and pyrrolidine) and aliphatic amines (n-dibutylamine) provided aza-Michael addition with a high yield of product (⁓98%) within shorter reaction period (2 h) at room temperature under mild reaction conditions using CuBTC. However, it was observed that the aza-Michael reaction proceeded more slowly, giving 62% yield of product after 24 h in the case of aromatic amine (aniline) with n-butyl acrylate in the presence of CuBTC under identical reaction conditions. The catalyst could be reused four recycles without losing its initial catalytic activity and selectivity. XRD and SEM analysis further confirmed that the crystallinity of catalyst was retained during the reaction. A reaction mechanism is proposed for the aza-Michael addition reaction over heterogeneous CuBTC catalyst.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rulev AY (2011) Aza-Michael reaction: achievements and prospects. Russ Chem Rev 80:197–218

    CAS  Google Scholar 

  2. Sánchez-Rosellό M, Aceña JL, Simόn-Fuentes A, Pozo del CA (2014) A general overview of the organocatalytic intramolecular aza-Michael reaction. Chem Soc Rev 43:7430–7453

    Google Scholar 

  3. Cabral J, Laszlo P, Mahe L, Montaufier MT, Randriamahefa SL (1989) Catalysis of the specific michael addition: The example of acrylate acceptors. Tetrahedron Lett 30:3969–3972

    CAS  Google Scholar 

  4. Genest D, Portinha D, Fleury E, Ganachaud F (2017) The aza-Michael reaction as an alternative strategy to generate advanced silicon-based (macro) molecules and materials. Prog Poly Sci 72:61–110

    CAS  Google Scholar 

  5. Xu LW, Li L, **a CG (2004) Transition-Metal-Based Lewis Acid Catalysis of Aza-Type Michael Additions of Amines to α, β-Unsaturated Electrophiles in Water. Helv Chim Acta 87:1522–1526

    CAS  Google Scholar 

  6. Azizi N, Saidi MR (2004) LiClO4 Accelerated Michael addition of amines to α, β-unsaturated olefins under solvent-free conditions. Tetrahedron 60:383–387

    CAS  Google Scholar 

  7. Xu LW, Li JW, **a CG, Zhou SL, Hu XX (2003) Efficient Copper-Catalyzed Chemo Selective Conjugate Addition of Aliphatic Amines to α, β-Unsaturated Compounds in Water. Synlett 15:2425–2427

    Google Scholar 

  8. Bartoli G, Bosco M, Marcantoni E, Pertrini M, Sambri L, Torregiani E (2001) Conjugate Addition of Amines to α, β-Enones Promoted by CeCl3·7H2O−NaI System Supported in Silica Gel. J Org Chem 66:9052–9055

    CAS  PubMed  Google Scholar 

  9. Srivastava N, Banik BK (2003) Bismuth Nitrate-Catalyzed Versatile Michael Reaction. J Org Chem 68:2109–2114

    CAS  PubMed  Google Scholar 

  10. Giovanna B, Roderick A (2016) Aza-Michael Mono-addition Using Acidic Alumina under Solventless Conditions. Molecules 21:815

    Google Scholar 

  11. Kantam ML, Neelima B, Reddy CV, Chakravarti R (2007) Aza-Michael Addition of Imidazoles to α, β-Unsaturated Compounds and Synthesis of β-Amino Alcohols via Nucleophilic Ring Opening of Epoxides Using Copper(II) Acetylacetonate (Cu(acac)2) Immobilized in Ionic Liquids. Ind Eng Chem Res 46:8614–8619

    CAS  Google Scholar 

  12. Ying A, Wang L, Deng H, Chen J, Chen X, Ye W (2009) Aza-Michael addition of aliphatic or aromatic amines to α, β-unsaturated compounds catalyzed by a DBU-derived ionic liquid under solvent-free conditions. Tetrahedron Lett 50:1653–1657

    CAS  Google Scholar 

  13. Ghasemi MH, Kowsari E, Shafiee A (2016) Aza-Michael-type addition reaction catalysed by a supported ionic liquid phase incorporating an anionic heteropoly acid. Tetrahedron Lett 57:1150–1153

    CAS  Google Scholar 

  14. Kumar S, Kaur A, Singh V (2019) Efficient protocol for Aza-Michael addition of N-heterocycles to α, β-unsaturated compound using [Ch]OH and [n-butyl urotropinium] OH as basic ionic liquids in aqueous/solvent free conditions. Synth Commun 49:193–201

    CAS  Google Scholar 

  15. Boruah K, Borah R (2019) Design of water stable 1,3-Dialkyl- 2-methyl imidazolium basic ionic liquids as reusable homogeneous catalysts for aza-michael reaction in neat condition. ChemistrySelect 4:3479–3485

    CAS  Google Scholar 

  16. Kantam ML, Neelima B, Reddy CV (2005) A recyclable protocol for aza-Michael addition of amines to α, β-unsaturated compounds using Cu-Al hydrotalcite. J Mol Catal A: Chem 241:147–150

    CAS  Google Scholar 

  17. Esteves PA, Esloa M, Rodriguez LM, Olivia-compost A, Radim H (2007) Aza-Michael reactions with vinyl sulfones and Amberlyst-15 as catalyst. Tetrahedron Lett 48:9040–9043

    CAS  Google Scholar 

  18. Nath J, Chaudhuri MK (2009) Phosphate Impregnated Titania: An Efficient Reusable Heterogeneous Catalyst for Aza-Michael Reactions under Solvent-Free Condition. Catal Lett 133:388–393

    CAS  Google Scholar 

  19. Saidi MR, Pourshojaei Y, Aryanasa F (2009) Highly Efficient Michael Addition Reaction of Amines Catalyzed by Silica-Supported Aluminum Chloride. Synth Commun 39:1109–1119

    CAS  Google Scholar 

  20. Bosica G, Spiteri J, Borg C (2014) Aza-Michael reaction: selective mono- versus bis-addition under environmentally-friendly conditions. Tetrahedron 70:2449–2454

    CAS  Google Scholar 

  21. Kalita P, Pegu CD, Dutta P, Baruah PK (2014) Room temperature solvent free aza-Michael reactions over nano-cage mesoporous materialsJ. Mol Catal A 394:145–150

    CAS  Google Scholar 

  22. Hosseinzadeh R, Aghili N (2016) M. Synthesis, Characterization and Catalytic Application of MCM-41 Supported Phenanthrolinium Dibromide Catalyst for Aza Michael Addition Reaction in Aqueous Medium. Catal Lett 146:1194–1203

    CAS  Google Scholar 

  23. Rathod PB, Kumar KSA, Athawale AA, Pandey AKS, Chattopadhyay S (2018) Polymer-Shell-Encapsulated Magnetite Nanoparticles Bearing Hexamethylenetetramine for Catalysing Aza-Michael Addition Reactions. Eur J Org Chem 43:5980–5987

    Google Scholar 

  24. Hakiki A, Kerbadou RM, Boukoussa B, Zahmani HH, Launay F, Pailleret A, Pillier F, Hacini S, Bengueddach A, Hamacha RJ (2019) Inorg Organomet Poly Mater 29:1773–1784

    CAS  Google Scholar 

  25. Corma A, Garcia H, LlabrésiXamena FX (2010) Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chem Rev 110:4606–4655

    CAS  PubMed  Google Scholar 

  26. Bhattacharjee S, Lee YR, Puthiaraj P, Cho SM, Ahn WS (2015) Metal-Organic Frameworks for Catalysis. Catal Surv Asia 19:203–222

    CAS  Google Scholar 

  27. Hu ML, Safarifard V, Doustkhah E, Rostamnia S, Morsali A, Nouruzi N, Beheshti S, Akhbari K (2018) Taking organic reactions over metal-organic frameworks as heterogeneous catalysis. Micropor Mesopor Mater 256:111–127

    CAS  Google Scholar 

  28. Rostamnia S, Mohsenzad F (2018) Nanoarchitecturing of open metal site Cr-MOFs for oxodiperoxo molybdenum complexes [MoO(O2)2@En/MIL-100(Cr)] as promising and bifunctional catalyst for selective thioether oxidation. Mol Catal 445:12–20

    CAS  Google Scholar 

  29. Rostamnia S, Alamgholiloo H, Jafari M (2018) Ethylene diamine post-synthesis modification on open metal site Cr-MOF to access efficient bifunctional catalyst for the Hantzsch condensation reaction. Appl Organomet Chem 32:e4370

    Google Scholar 

  30. Alamgholiloo H, Zhang S, Ahadi A, Rostamnia S, Banaei R, Li Z, Liu X, Shokouhimehr M (2019) Synthesis of bimetallic 4-PySI-Pd@Cu(BDC) via open metal site Cu-MOF: Effect of metal and support of Pd@Cu-MOFs in H2 generation from formic acid. Mol Catal 467:30–37

    CAS  Google Scholar 

  31. Panahi P, Nouruzi N, Doustkhah E, Mohtasham H, Ahadi A, Ghiasi-Moaser A, Rostamnia S, Mahmoudi G, Khataeed A (2019) Zirconium based porous coordination polymer (PCP) bearing organocatalytic ligand: A promising dual catalytic center for ultrasonic heterocycle synthesis. Ultrason Sonchem 58:104653

    Google Scholar 

  32. Alamgholiloo H, Rostamnia S, Zhang K, Lee TH, Lee YS, Varma RS, Jang HW, Shokouhimehr M (2020) Boosting Aerobic Oxidation of Alcohols via Synergistic Effect between TEMPO and a Composite Fe3O4/Cu-BDC/GO Nanocatalyst. ACS Omega 5:5182–5191

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Alamgholiloo H, Rostamnia S, Hassankhani A, Liu X, Eftekhari A, Hasanzadeh A, Zhang K, Karimi-Maleh H, Khaksar S, Varma RS, Shokouhimehr M (2020) Formation and stabilization of colloidal ultra-small palladium nanoparticles on diamine-modified Cr-IL-101: Synergic boost to hydrogen production from formic acid. J Colloid Interf Sci 567:126–135

    CAS  Google Scholar 

  34. Jang MS, Yu K, Lee J, Ahn WS (2020) Sonochemical synthesis of rho-ZMOF catalyst for an enhanced CO2 cycloaddition reaction. Mater Lett 277:128387

    CAS  Google Scholar 

  35. Kim J, Cho HY, Ahn WS (2012) Synthesis and Adsorption/Catalytic Properties of the Metal Organic Framework CuBTC. Catal Surv Asia 16:106–119

    CAS  Google Scholar 

  36. Hall J, Bollini P (2019) Structure, characterization, and catalytic properties of open-metal sites in metal organic frameworks. React Chem Eng 4:207–222

    CAS  Google Scholar 

  37. Kökçam-Demir U, Goldman A, Esrafili L, Gharib M, Morsali A, Weingart O, Janiak C (2020) Coordinatively Unsaturated Metal Sites (Open Metal Sites) in Metal-Organic Frameworks: Design and Applications. Chem Soc Rev 49:2751–2798

    PubMed  Google Scholar 

  38. Rostamnia S, Alamgholiloo H (2018) Synthesis and Catalytic Application of Mixed Valence Iron (FeII/FeIII)-Based OMS-MIL-100(Fe) as an Efficient Green Catalyst for the azaMichael Reaction. Catal Lett 148:2918–2928

    CAS  Google Scholar 

  39. Savonnet M, Aguado S, Ravon U, Bazer-Bachi D, Lecocq V, Bats N, Pinel C, Farrusseng D (2009) Solvent free base catalysis and transesterification over basic functionalised Metal-Organic Frameworks. Green Chem 11:1729–1732

    CAS  Google Scholar 

  40. Nguyen LTL, Nguyen TT, Nguyen KD, Phan NTS (2012) Metal–organic framework MOF-199 as an efficient heterogeneous catalyst for the aza-Michael reaction. Appl Catal A Gen 425–426:44–52

    Google Scholar 

  41. Kim J, Kim SH, Yang ST, Yang ST, Ahn WS (2012) Bench-scale preparation of Cu3(BTC)2 by ethanol reflux: Synthesis optimization and adsorption/catalytic applications. Micropor Mesopor Mater 161:48–55

    CAS  Google Scholar 

  42. Douraki SM, Massah AR (2015) The zeolite ZSM-5-SO3H catalyzed aza-Michael addition of amines and sulfonamides to electron-deficient alkenes under solvent-free conditions. Indian J Chem 54B:1346–1349

    CAS  Google Scholar 

  43. Dai L, Zhang Y, Dou Q, Wang X, Chen Y (2013) Chemo/regioselective Aza-Michael additions of amines to conjugate alkenes catalyzed by polystyrene-supported AlCl3. Tetrahedron 69:1712–1716

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by University of Dhaka (CARS) internal fund and in part by the Basic Science Research Program through the National Research Foundation of Korea (NRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samiran Bhattacharjee.

Ethics declarations

Conflict of interest

The authors have no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharjee, S., Shaikh, A.A. & Ahn, WS. Heterogeneous Aza-Michael Addition Reaction by the Copper-Based Metal–Organic Framework (CuBTC). Catal Lett 151, 2011–2018 (2021). https://doi.org/10.1007/s10562-020-03459-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03459-7

Keywords

Navigation