Log in

Fabrication of Nitrogen-Enriched Graphene Oxide on the DFNS/Metal NPs as a Nanocatalysts for the Reduction of 4-Nitrophenol and 2-Nitroaniline

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

DFNS is functionalized by using graphene oxide (GO) (N-enriched GO) as a robust anchor. Hence, the metal nanoparticles (NPs) are well-dispersed without aggregation over the DFNS/GO (DFNS/GO/X, X = Pd, Au, Cu). For preventing the restacking of graphene sheets, the supramolecular polymerized GO behaves not only as a spacer but also as a nitrogen source for producing active centers in the case of metal NP attachments. In this way, the nitrogen over the level of the GO sheets adjusts with copper ions in order to synthesis palladium nanoparticles. Water pollution is known as a significant global concern that can threat the entire biosphere and can influence the lives of many millions of people in the world. Water pollution can make many diseases and millions of people die annually due to illness caused by the dirty water. 4-nitrophenol and also 2-nitroaniline, which have been specified as hazardous toxic. In addition, wastes contaminants are in USEPA’s list. Therefore, develo** novel approaches are essential in order to eliminate these waste contaminants. In the case of the synthesize of colors and drugs, powerful performers o-phenylenediamine (o-PDA) and powerful performers were intended as considerable intermediate that preparation from 2-NA as well as 4-NP. As-prepared DFNS/GO/X (X = Pd, Au, Cu) nanostructures are used for the 4-nitrophenol and 2-nitroaniline reduction that causing high efficiency of the reaction by taking into account of chemoselectivity.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang J, Chen G, Chaker M, Rosei F, Ma D (2013) Appl Catal B Environ 132:107–115

    Google Scholar 

  2. Cardenas-Lizana F, Lamey D, Perret N, Gomez-Quero S, Kiwi-Minsker L, Keane MA (2012) Catal Commun 21:46–51

    CAS  Google Scholar 

  3. Sadeghzadeh SM, Zhiani R, Emrani S (2018) Catal Lett 148:119–124

    CAS  Google Scholar 

  4. Zarejousheghani M, Moeder M, Borsdorf H (2013) Anal Chim Acta 798:48–55

    CAS  PubMed  Google Scholar 

  5. Li X, Wang X, Song S, Liu D, Zhang H (2012) Chem Eur J 18:7601–7607

    CAS  PubMed  Google Scholar 

  6. Coccia F, Tonucci L, Bosco D, Bressan M, d’Alessandrro N (2012) Green Chem 14:1073–1078

    CAS  Google Scholar 

  7. Yoosefian M, Mola A, Fooladi E, Ahmadzadeh S (2017) J Mol Liq 225:34–41

    CAS  Google Scholar 

  8. Etminan N, Yoosefian M, Raissi H, Hakimi M (2016) J Mol Liq 214:313–318

    CAS  Google Scholar 

  9. Yoosefian M (2017) Appl Surf Sci 392:225–230

    CAS  Google Scholar 

  10. Le X, Dong Z, Zhang W, Li X, Ma J (2014) J Mol Catal A Chem 395:58–65

    CAS  Google Scholar 

  11. Le X, Dong Z, Li X, Zhang W, Le M, Ma J (2015) Catal Commun 59:21–25

    CAS  Google Scholar 

  12. O’Connor OA, Young LY (1989) Environ Toxicol Chem 8:853–862

    Google Scholar 

  13. Oturan MA, Peiroten J, Chartrin P, Acher AJ (2000) Environ Sci Technol 34:3474–3479

    CAS  Google Scholar 

  14. Li K, Zheng Z, Huang X, Zhao G, Feng J, Zhang J (2009) J Hazard Mater 166:213–220

    CAS  PubMed  Google Scholar 

  15. Zhang Y, Yuan X, Wang Y, Chen Y (2012) J Mater Chem 22:7245–7251

    CAS  Google Scholar 

  16. Saha S, Pal A, Kundu S, Basu S, Pal T (2010) Langmuir 26:2885–2893

    CAS  PubMed  Google Scholar 

  17. Sahiner N, Karakoyun N, Alpaslan D, Aktas N (2013) Int J Polym Mater Polym Biomater 62:590–595

    CAS  Google Scholar 

  18. Yang Y, Guo Y, Liu F, Yuan X, Guo Y, Zhang S, Guo W, Huo M (2013) Appl Catal B Environ 142–143:828–837

    Google Scholar 

  19. Mohamed MM, Al-Sharif MS (2013) Appl Catal B Environ 142–143:432–441

    Google Scholar 

  20. Muniz-Miranda M (2014) Appl Catal B Environ 146:147–150

    CAS  Google Scholar 

  21. Ozay H, Kubilay S, Aktas N, Sahiner N (2011) Int J Polym Mater 60:163–173

    CAS  Google Scholar 

  22. Paganelli S, Piccolo O, Baldi F, Tassini R, Gallo M, La Sorella G (2013) Appl Catal A 451:144–152

    CAS  Google Scholar 

  23. Shiraishi Y, Fujiwara K, Sugano Y, Ichikawa S, Hirai T (2013) ACS Catal 3:312–320

    CAS  Google Scholar 

  24. Imamura K, Yoshikawa T, Nakanishi K, Hashimoto K, Kominami H (2013) Chem Commun 49:10911–10913

    CAS  Google Scholar 

  25. Le X, Dong Z, ** Z, Wang Q, Ma J (2014) Catal Commun 53:47–52

    CAS  Google Scholar 

  26. Wang P, Liu H, Niu J, Li R, Ma J (2014) Cat Sci Technol 4:1333–1339

    CAS  Google Scholar 

  27. Zhang F, ** J, Zhong X, Li S, Niu J, Li R, Ma J (2011) Green Chem 13:1238–1243

    CAS  Google Scholar 

  28. Dong Z, Le X, Dong C, Zhang W, Li X, Ma J (2015) Appl Catal B 162:372–380

    CAS  Google Scholar 

  29. Yang MQ, Pan X, Zhang N, Xu YJ (2013) CrystEngComm 15:6819–6828

    CAS  Google Scholar 

  30. Antolini E (2009) Energy Environ Sci 2:915–931

    CAS  Google Scholar 

  31. Lee H, Habas SE, Kweskin S, Butcher D, Somorjai GA, Yang P (2006) Angew Chem Int Ed 45:7824–7828

    CAS  Google Scholar 

  32. Zeng J, Zhang Q, Chen J, **a Y (2009) Nano Lett 10:30–35

    Google Scholar 

  33. Lin Y, Qiao Y, Wang Y, Yan Y, Huang J (2012) J Mater Chem 22:18314–18320

    CAS  Google Scholar 

  34. Yuan G, Keane MA (2007) Ind Eng Chem Res 46:705–715

    CAS  Google Scholar 

  35. Wei S, Ma Z, Wang P, Dong Z, Ma J (2013) J Mol Catal A Chem 370:175–181

    CAS  Google Scholar 

  36. Fang Y, Wang E (2013) Nanoscale 5:1843–1848

    CAS  PubMed  Google Scholar 

  37. Ganapathy D, Sekar G (2013) Catal Commun 39:50–54

    CAS  Google Scholar 

  38. Polshettiwar V, Cha D, Zhang X, Basset JM (2010) Angew Chem 49:9652–9656

    CAS  Google Scholar 

  39. Li W, Zhang B, Li X, Zhang H, Zhang Q (2013) Appl Catal A 459:65–72

    CAS  Google Scholar 

  40. Maity A, Polshettiwar V (2017) ChemSusChem 10:3866–3913

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kundu PK, Dhiman M, Modak A, Chowdhury A (2016) ChemPlusChem 81:1142–1146

    CAS  PubMed  Google Scholar 

  42. Gautam P, Dhiman M, Polshettiwar V, Bhanage BM (2016) Green Chem 18:5890–5899

    CAS  Google Scholar 

  43. Fihri A, Cha D, Bouhrara M, Almana N, Polshettiwar V (2012) ChemSusChem 5:85–89

    CAS  PubMed  Google Scholar 

  44. Sadeghzadeh SM, Daneshfar F, Malekzadeh M (2014) Chin J Chem 32:349–355

    CAS  Google Scholar 

  45. Sadeghzadeh SM (2015) RSC Adv 5:68947–68952

    CAS  Google Scholar 

  46. Fan L, Wang J, Zhang X, Sadeghzadeh SM, Zhiani R, Shahroudi M, Amarloo F (2019) Catal Lett 149:3465–3475

    CAS  Google Scholar 

  47. Sadeghzadeh SM, Zhiani R, Emrani S (2017) RSC Adv 7:24885–24894

    CAS  Google Scholar 

  48. Maleki A, Hajizadeh Z, Abbasi H (2018) Carbon Lett 27:42

    Google Scholar 

  49. Maleki A, Paydar R (2015) RSC Adv 5:33177–33184

    CAS  Google Scholar 

  50. Maleki A, Rahimi J (2018) J Porous Mater 25:1789–1796

    CAS  Google Scholar 

  51. Shahabi Nejad M, Seyedi N, Sheibani H (2019) Mater Chem Phys 238:121849

    CAS  Google Scholar 

  52. Shahabi Nejad M, Behzadi S, Sheibani H (2019) Appl Organomet Chem e5166

  53. Esmaeili N, Mohammadi P, Abbaszadeh M, Sheibani H (2019) Int J Hydrog Energy 44:23002–23009

    CAS  Google Scholar 

  54. Le Normand F, Hommet J, Szörényi T, Fuchs C, Fogarassy E (2001) Phys Rev B 64:235416

    Google Scholar 

  55. Cao LM, Zhang XY, Gao CX, Wang WK, Zhang ZL, Zhang Z (2003) Nanotechnology 14:931–934

    CAS  Google Scholar 

  56. Machnikowski J, Grzyb B, Weber JV, Frackowiak E, Rouzaud JN, Béguin F (2004) Electrochim Acta 49:423–432

    CAS  Google Scholar 

Download references

Acknowledgements

The Project Supported by the Foundation (No. ZR20190106) of State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyong Shao or Seyed Mohsen Sadeghzadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Z., Sadeghzadeh, .M. Fabrication of Nitrogen-Enriched Graphene Oxide on the DFNS/Metal NPs as a Nanocatalysts for the Reduction of 4-Nitrophenol and 2-Nitroaniline. Catal Lett 151, 1882–1893 (2021). https://doi.org/10.1007/s10562-020-03445-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03445-z

Keywords

Navigation